Select All    Deselect All
 |   | 
Details
   print
  Record Links
Author Elena Barbaro, Krystyna Koziol, Mats P. Björkman, Carmen P. Vega, Christian Zdanowicz, Tonu Martma, Jean-Charles Gallet, Daniel Kępski, Catherine Larose, Bartłomiej Luks, Florian Tolle, Thomas V. Schuler, Aleksander Uszczyk, Andrea Spolaor doi  isbn
openurl 
  Title Measurement report: Spatial variations in ionic chemistry and water-stable isotopes in the snowpack on glaciers across Svalbard during the 2015–2016 snow accumulation season Type Journal
  Year (down) 2021 Publication Atmospheric Chemistry and Physics Abbreviated Journal  
  Volume 21 Issue 4 Pages 3163-3180  
  Keywords  
  Abstract The Svalbard archipelago, located at the Arctic sea-ice edge between 74 and 81∘ N, is ∼60 % covered by glaciers. The region experiences rapid variations in atmospheric flow during the snow season (from late September to May) and can be affected by air advected from both lower and higher latitudes, which likely impact the chemical composition of snowfall. While long-term changes in Svalbard snow chemistry have been documented in ice cores drilled from two high-elevation glaciers, the spatial variability of the snowpack composition across Svalbard is comparatively poorly understood. Here, we report the results of the most comprehensive seasonal snow chemistry survey to date, carried out in April 2016 across 22 sites on seven glaciers across the archipelago. At each glacier, three snowpits were sampled along the altitudinal profiles and the collected samples were analysed for major ions (Ca2+, K+, Na+, Mg2+, NH4+, SO42-, Br−, Cl−, and NO3-) and stable water isotopes (δ18O, δ2H). The main aims were to investigate the natural and anthropogenic processes influencing the snowpack and to better understand the influence of atmospheric aerosol transport and deposition patterns on the snow chemical composition. The snow deposited in the southern region of Svalbard is characterized by the highest total ionic loads, mainly attributed to sea-salt particles. Both NO3- and NH4+ in the seasonal snowpack reflect secondary aerosol formation and post-depositional changes, resulting in very different spatial deposition patterns: NO3- has its highest loading in north-western Spitsbergen and NH4+ in the south-west. The Br− enrichment in snow is highest in north-eastern glacier sites closest to areas of extensive sea-ice coverage. Spatial correlation patterns between Na+ and δ18O suggest that the influence of long-range transport of aerosols on snow chemistry is proportionally greater above 600–700 m a.s.l.  
  Programme 1192  
  Campaign  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1680-7316 ISBN 1680-7316 Medium  
  Area Expedition Conference  
  Notes Approved yes  
  Call Number Serial 8608  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print