Select All    Deselect All
 |   | 
Details
   print
  Record Links
Author Kristin N. Barton, Nairita Pal, Steven R. Brus, Mark R. Petersen, Brian K. Arbic, Darren Engwirda, Andrew F. Roberts, Joannes J. Westerink, Damrongsak Wirasaet, Michael Schindelegger doi  openurl
  Title Global Barotropic Tide Modeling Using Inline Self-Attraction and Loading in MPAS-Ocean Type Journal
  Year (down) 2022 Publication Journal of Advances in Modeling Earth Systems Abbreviated Journal  
  Volume 14 Issue 11 Pages e2022MS003207  
  Keywords barotropic tides E3SM MPAS-Ocean numerical ocean modeling self-attraction and loading surface tides  
  Abstract We examine ocean tides in the barotropic version of the Model for Prediction Across Scales (MPAS-Ocean), the ocean component of the Department of Energy Earth system model. We focus on four factors that affect tidal accuracy: self-attraction and loading (SAL), model resolution, details of the underlying bathymetry, and parameterized topographic wave drag. The SAL term accounts for the tidal loading of Earth's crust and the self-gravitation of the ocean and the load-deformed Earth. A common method for calculating SAL is to decompose mass anomalies into their spherical harmonic constituents. Here, we compare a scalar SAL approximation versus an inline SAL using a fast spherical harmonic transform package. Wave drag accounts for energy lost by breaking internal tides that are produced by barotropic tidal flow over topographic features. We compare a series of successively finer quasi-uniform resolution meshes (62.9, 31.5, 15.7, and 7.87 km) to a variable resolution (45 to 5 km) configuration. We ran MPAS-Ocean in a single-layer barotropic mode forced by five tidal constituents. The 45 to 5 km variable resolution mesh obtained the best total root-mean-square error (5.4 cm) for the deep ocean (1,000 m) tide compared to TPXO8 and ran twice as fast as the quasi-uniform 8 km mesh, which had an error of 5.8 cm. This error is comparable to those found in other forward (non-assimilative) ocean tide models. In future work, we plan to use MPAS-Ocean to study tidal interactions with other Earth system components, and the tidal response to climate change.  
  Programme 688  
  Campaign  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1942-2466 ISBN Medium  
  Area Expedition Conference  
  Notes Approved yes  
  Call Number Serial 8572  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print