Select All    Deselect All
 |   | 
Details
   print
  Record Links
Author Ghislain Picard, Marion Leduc-Leballeur, Alison F. Banwell, Ludovic Brucker, Giovanni Macelloni doi  openurl
  Title The sensitivity of satellite microwave observations to liquid water in the Antarctic snowpack Type Journal
  Year (down) 2022 Publication The Cryosphere Discussions Abbreviated Journal  
  Volume Issue Pages 1-34  
  Keywords  
  Abstract

Abstract. Surface melting on the Antarctic Ice Sheet has been monitored by satellite microwave radiometery for over 40 years. Despite this long perspective, our understanding of the microwave emission from wet snow is still limited, preventing the full exploitation of these observations to study supraglacial hydrology. Using the Snow Microwave Radiative Transfer (SMRT) model, this study investigates the sensitivity of microwave brightness temperature to snow liquid water content at frequencies from 1.4 to 37 GHz. We first determine the snowpack properties for 8 selected coastal sites by retrieving profiles of density, grain size and ice layers from microwave observations when the snowpack is dry during winter time. Second, a series of brightness temperature simulations is run with added water. The results show that: i) a small amount of liquid water (≈0.5 kg m-2 can be detected, but the actual amount can not be retrieved in the full range of possible water contents, ii) the detection of a buried wet layer is possible up to a maximum 1 to 6 m depth depending on the frequency (6–37 GHz) and on the site, iii) surface ponds and water-saturated areas may prevent melt detection, but the current coverage of these water bodies in the large satellite field of view is presently too small in Antarctica to have noticeable effects, iv) at 1.4 GHz, while the simulations are less reliable, we found a weaker sensitivity to liquid water and the maximal depth of detection is relatively shallow (<10 m) compared to the typical radiation penetration depth in dry firn (≈1000 m) at this low frequency. These numerical results pave the way for the development of improved multi-frequency algorithms to detect melt intensity and depth in the Antarctic snowpack.

 
  Programme 1110  
  Campaign  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1994-0416 ISBN Medium  
  Area Expedition Conference  
  Notes Approved yes  
  Call Number Serial 8443  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print