Select All    Deselect All
 |   | 
Details
   print
  Record Links
Author Benjamin Pohl, Vincent Favier, Jonathan Wille, Danielle G Udy, Tessa R Vance, Julien Pergaud, Niels Dutrievoz, Juliette Blanchet, Christoph Kittel, Charles Amory, Gerhard Krinner, Francis Codron doi  openurl
  Title Relationship Between Weather Regimes and Atmospheric Rivers in East Antarctica Type Journal
  Year (down) 2021 Publication Journal of Geophysical Research: Atmospheres Abbreviated Journal  
  Volume 126 Issue 24 Pages e2021JD035294  
  Keywords atmospheric rivers East Antarctica snowfall amounts temperature anomalies weather regimes  
  Abstract Here, we define weather regimes in the East Antarctica—Southern Ocean sector based on daily anomalies of 700 hPa geopotential height derived from ERA5 reanalysis during 1979–2018. Most regimes and their preferred transitions depict synoptic-scale disturbances propagating eastwards off the Antarctic coastline. While regime sequences are generally short, their interannual variability is strongly driven by the polarity of the Southern Annular Mode (SAM). Regime occurrences are then intersected with atmospheric rivers (ARs) detected over the same region and period. ARs are equiprobable throughout the year, but clearly concentrate during regimes associated with a strong atmospheric ridges/blockings on the eastern part of the domain, which act to channel meridional advection of heat and moisture from the lower latitudes towards Antarctica. Both regimes and ARs significantly shape climate variability in Antarctica. Regimes favorable to AR occurrences are associated with anomalously warm and humid conditions in coastal Antarctica and, to a lesser extent, the hinterland parts of the Antarctic plateau. These anomalies are strongly enhanced during AR events, with warmer anomalies and dramatically amplified snowfall amounts. Large-scale conditions favoring AR development are finally explored. They show weak dependency to the SAM, but particularly strong atmospheric ridges/blockings over the Southern Ocean appear as the most favorable pattern, in which ARs can be embedded, and to which they contribute.  
  Programme 411  
  Campaign  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2169-8996 ISBN Medium  
  Area Expedition Conference  
  Notes Approved yes  
  Call Number Serial 8430  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print