Select All    Deselect All
 |   | 
Details
   print
  Record Links
Author G. Picard, H. Löwe, F. Domine, L. Arnaud, F. Larue, V. Favier, E. Le Meur, E. Lefebvre, J. Savarino, A. Royer file  doi
openurl 
  Title The Microwave Snow Grain Size: A New Concept to Predict Satellite Observations Over Snow-Covered Regions Type Journal
  Year (down) 2022 Publication AGU Advances Abbreviated Journal  
  Volume 3 Issue 4 Pages e2021AV000630  
  Keywords microstructure microwave modeling porous media remote sensing snow  
  Abstract Satellite observations of snow-covered regions in the microwave range have the potential to retrieve essential climate variables such as snow height. This requires a precise understanding of how microwave scattering is linked to snow microstructural properties (density, grain size, grain shape and arrangement). This link has so far relied on empirical adjustments of the theories, precluding the development of robust retrieval algorithms. Here we solve this problem by introducing a new microstructural parameter able to consistently predict scattering. This “microwave grain size” is demonstrated to be proportional to the measurable optical grain size and to a new factor describing the chord length dispersion in the microstructure, a geometrical property known as polydispersity. By assuming that the polydispersity depends on the snow grain type only, we retrieve its value for rounded and faceted grains by optimization of microwave satellite observations in 18 Antarctic sites, and for depth hoar in 86 Canadian sites using ground-based observations. The value for the convex grains (0.6) compares favorably to the polydispersity calculated from 3D micro-computed tomography images for alpine grains, while values for depth hoar show wider variations (1.2–1.9) and are larger in Canada than in the Alps. Nevertheless, using one value for each grain type, the microwave observations in Antarctica and in Canada can be simulated from in-situ measurements with good accuracy with a fully physical model. These findings improve snow scattering modeling, enabling future more accurate uses of satellite observations in snow hydrological and meteorological applications.  
  Programme 1110,1177  
  Campaign  
  Address  
  Corporate Author Thesis Bachelor's thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2576-604X ISBN Medium  
  Area Expedition Conference  
  Notes Approved yes  
  Call Number Serial 8424  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print