Select All    Deselect All
 |   | 
Details
   print
  Record Links
Author Erica M. Lucas, Andrew A. Nyblade, Natalie J. Accardo, Andrew J. Lloyd, Douglas A. Wiens, Richard C. Aster, Terry J. Wilson, Ian W. Dalziel, Graham W. Stuart, John Paul O’Donnell, J. Paul Winberry, Audrey D. Huerta doi  openurl
  Title Shear Wave Splitting Across Antarctica: Implications for Upper Mantle Seismic Anisotropy Type Journal
  Year (down) 2022 Publication Journal of Geophysical Research: Solid Earth Abbreviated Journal  
  Volume 127 Issue 4 Pages e2021JB023325  
  Keywords anisotropy Antarctica shear wave splitting upper mantle  
  Abstract We examine upper mantle anisotropy across the Antarctic continent using 102 new shear wave splitting measurements obtained from teleseismic SKS, SKKS, and PKS phases combined with 107 previously published results. For the new measurements, an eigenvalue technique is used to estimate the fast polarization direction and delay time for each phase arrival, and high-quality measurements are stacked to determine the best-fit splitting parameters at each seismic station. The ensemble of splitting measurements shows largely NE-SW-oriented fast polarization directions across Antarctica, with a broadly clockwise rotation in polarization directions evident moving from west to east across the continent. Although the first-order pattern of NE-SW-oriented polarization directions is suggestive of a single plate-wide source of anisotropy, we argue the observed pattern of anisotropy more likely arises from regionally variable contributions of both lithospheric and sub-lithospheric mantle sources. Anisotropy observed in the interior of East Antarctica, a region underlain by thick lithosphere, can be attributed to relict fabrics associated with Precambrian tectonism. In contrast, anisotropy observed in coastal East Antarctica, the Transantarctic Mountains (TAM), and across much of West Antarctica likely reflects both lithospheric and sub-lithospheric mantle fabrics. While sub-lithospheric mantle fabrics are best associated with either plate motion-induced asthenospheric flow or small-scale convection, lithospheric mantle fabrics in coastal East Antarctica, the TAM, and West Antarctica generally reflect Jurassic—Cenozoic tectonic activity.  
  Programme 133  
  Campaign  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2169-9356 ISBN Medium  
  Area Expedition Conference  
  Notes Approved yes  
  Call Number Serial 8322  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print