Select All    Deselect All
 |   | 
Details
   print
  Record Links
Author B. de Fleurian, O. Gagliardini, T. Zwinger, G. Durand, E. Le Meur, D. Mair, P. RÃ¥back doi  openurl
  Title A double continuum hydrological model for glacier applications Type Journal
  Year (down) 2014 Publication The Cryosphere Abbreviated Journal  
  Volume 8 Issue 1 Pages 137-153  
  Keywords  
  Abstract

Abstract. The flow of glaciers and ice streams is strongly influenced by the presence of water at the interface between ice and bed. In this paper, a hydrological model evaluating the subglacial water pressure is developed with the final aim of estimating the sliding velocities of glaciers. The global model fully couples the subglacial hydrology and the ice dynamics through a water-dependent friction law. The hydrological part of the model follows a double continuum approach which relies on the use of porous layers to compute water heads in inefficient and efficient drainage systems. This method has the advantage of a relatively low computational cost that would allow its application to large ice bodies such as Greenland or Antarctica ice streams. The hydrological model has been implemented in the finite element code Elmer/Ice, which simultaneously computes the ice flow. Herein, we present an application to the Haut Glacier d'Arolla for which we have a large number of observations, making it well suited to the purpose of validating both the hydrology and ice flow model components. The selection of hydrological, under-determined parameters from a wide range of values is guided by comparison of the model results with available glacier observations. Once this selection has been performed, the coupling between subglacial hydrology and ice dynamics is undertaken throughout a melt season. Results indicate that this new modelling approach for subglacial hydrology is able to reproduce the broad temporal and spatial patterns of the observed subglacial hydrological system. Furthermore, the coupling with the ice dynamics shows good agreement with the observed spring speed-up.

 
  Programme 1053  
  Campaign  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1994-0416 ISBN Medium  
  Area Expedition Conference  
  Notes Approved yes  
  Call Number Serial 8192  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print