Select All    Deselect All
 |   | 
Details
   print
  Record Links
Author Jean-François Rontani, Rémi Amiraux, Catherine Lalande, Marcel Babin, Hak-Ryul Kim, Simon T. Belt doi  openurl
  Title Use of palmitoleic acid and its oxidation products for monitoring the degradation of ice algae in Arctic waters and bottom sediments Type Journal
  Year (down) 2018 Publication Organic geochemistry Abbreviated Journal  
  Volume 124 Issue Pages 88-102  
  Keywords Arctic Biotic and abiotic degradation Palmitoleic acid Sea ice Sinking particles Superficial bottom sediments Sympagic algae  
  Abstract Degradation of palmitoleic acid (C16:1ω7), the main fatty acid component of sea ice-associated (sympagic) diatoms, was monitored in Arctic sea ice at the beginning of ice melting and in the underlying sinking particles and superficial bottom sediments. In sea ice, degradation of sympagic algae involved biotic oxidation induced by 10S-DOX-like lipoxygenase of unknown salinity-stressed attached bacteria, while photo- and autoxidation were limited. In the water column, strong hydratase and Z/E isomerase activity were observed. Hydration of unsaturated fatty acids seems to be a detoxification strategy, which is essential for bacterial survival when associated with free fatty acid-rich environments such as ice algae. In contrast, Z/E isomerisation of palmitoleic acid was attributed to the release of Fe2+ ions during radical-induced damage of the active site of the bacterial 10S-DOX-like lipoxygenase and Z/E isomerases. Due to the poor physiological state of their attached bacteria resulting from salinity stress in brine channels or toxicity of free ice algae fatty acids, sympagic algae appeared to be only very weakly biotically degraded within the water column. In bottom sediments, free radicals resulting from 10S-DOX-like lipoxygenase activity induced a strong autoxidation of the ice algal material. The presence in bottom sediments of a significant proportion of oxidation products resulting from 10S-DOX-like lipoxygenase activity attested to the strong contribution of sea ice-derived OM released during the early stages of ice melt prior to deposition in the sediments. However, on the basis of the highest fatty acid photooxidation state observed in these sediments, an additional contribution of highly photooxidized material (ice algal material released at the end of ice melting or open water phytoplankton) seems likely. The degradation of hydroperoxides, resulting from biotic and abiotic degradation of palmitoleic acid, appeared to involve: (i) homolytic cleavage of the peroxyl group affording the corresponding hydroxy- and oxoacids, (ii) reduction to the corresponding hydroxyacids by peroxygenases, (iii) heterolytic proton-catalysed cleavage and (iv) conversion to allylic 1,4-diols by diol synthases and hydroperoxide isomerases.  
  Programme 1164  
  Campaign  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0146-6380 ISBN Medium  
  Area Expedition Conference  
  Notes Approved yes  
  Call Number Serial 8135  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print