Select All    Deselect All
 |   | 
Details
   print
  Record Links
Author Lorène Julia Marchand, Michèle Tarayre, Thomas Dorey, Yann Rantier, Françoise Hennion file  doi
openurl 
  Title Morphological variability of cushion plant Lyallia kerguelensis (Caryophyllales) in relation to environmental conditions and geography in the Kerguelen Islands: implications for cushion necrosis and climate change Type Journal
  Year (down) 2020 Publication Polar Biology Abbreviated Journal  
  Volume 44 Issue 1 Pages 17-30  
  Keywords  
  Abstract In recent decades, climate change has been faster in various parts of the world. Within species, to counter rapid climate changes shift of geographical area, individuals’ plastic responses or populations’ genetic adaptation might occur. The sub-Antarctic islands are subject to one of the most rapid climate changes on earth, with already visible impacts on native vegetation. Such might be the case of Lyallia kerguelensis a cushion plant strictly endemic to the Kerguelen Islands. In L. kerguelensis, necrotic parts were observed in cushions these last decades and possibly related to water stress. We analysed morphological variability of L. kerguelensis, including necrosis extent, across 19 populations spanning a wide range of environments across the Kerguelen Islands. Inter-population variations in the cushion surface area, shape and compactness were well explained by topography, degree of wind exposure, slope aspect, proportions of coarse sand and bare soil, and geographical distance between populations. All these variables are related to wind intensity and water availability. Moreover, in cushions with less than 10% necrosis in surface area, necrosis extent was positively correlated to soil sodium. Sodium availability might reduce the plant’s capacity for osmotic adjustment in face of other abiotic stresses, such as water stress. We conclude that cushion morphology may have the capacity to adjust to environmental variation, including aspects of climate change, but that cushion necrosis may be accelerated in the driest and most saline environments.  
  Programme 1116  
  Campaign  
  Address  
  Corporate Author Thesis Bachelor's thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1432-2056 ISBN Medium  
  Area Expedition Conference  
  Notes Approved yes  
  Call Number Serial 7793  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print