Select All    Deselect All
 |   | 
Details
   print
  Record Links
Author file  doi
openurl 
  Title Genome-wide analyses reveal drivers of penguin diversification Type Journal
  Year (down) 2020 Publication Proceedings of the National Academy of Sciences Abbreviated Journal  
  Volume 117 Issue 36 Pages 22281-22292  
  Keywords ancestral distribution ancestral niche Antarctica genome penguin  
  Abstract Penguins are the only extant family of flightless diving birds. They currently comprise at least 18 species, distributed from polar to tropical environments in the Southern Hemisphere. The history of their diversification and adaptation to these diverse environments remains controversial. We used 22 new genomes from 18 penguin species to reconstruct the order, timing, and location of their diversification, to track changes in their thermal niches through time, and to test for associated adaptation across the genome. Our results indicate that the penguin crown-group originated during the Miocene in New Zealand and Australia, not in Antarctica as previously thought, and that Aptenodytes is the sister group to all other extant penguin species. We show that lineage diversification in penguins was largely driven by changing climatic conditions and by the opening of the Drake Passage and associated intensification of the Antarctic Circumpolar Current (ACC). Penguin species have introgressed throughout much of their evolutionary history, following the direction of the ACC, which might have promoted dispersal and admixture. Changes in thermal niches were accompanied by adaptations in genes that govern thermoregulation and oxygen metabolism. Estimates of ancestral effective population sizes (Ne) confirm that penguins are sensitive to climate shifts, as represented by three different demographic trajectories in deeper time, the most common (in 11 of 18 penguin species) being an increased Ne between 40 and 70 kya, followed by a precipitous decline during the Last Glacial Maximum. The latter effect is most likely a consequence of the overall decline in marine productivity following the last glaciation.  
  Programme 137,354  
  Campaign  
  Address  
  Corporate Author Thesis Bachelor's thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0027-8424, 1091-6490 ISBN Medium  
  Area Expedition Conference  
  Notes Approved yes  
  Call Number Serial 7780  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print