Select All    Deselect All
 |   | 
Details
   print
  Record Links
Author Steven J. A. van der Linden, John M. Edwards, Chiel C. van Heerwaarden, Etienne Vignon, Christophe Genthon, Igor Petenko, Peter Baas, Harmen J. J. Jonker, Bas J. H. van de Wiel doi  openurl
  Title Large-Eddy Simulations of the Steady Wintertime Antarctic Boundary Layer Type Journal
  Year (down) 2019 Publication Boundary-Layer Meteorology Abbreviated Journal  
  Volume 173 Issue 2 Pages 165-192  
  Keywords  
  Abstract Observations of two typical contrasting weakly stable and very stable boundary layers from the winter at Dome C station, Antarctica, are used as a benchmark for two centimetre-scale-resolution large-eddy simulations. By taking the Antarctic winter, the effects of the diurnal cycle are eliminated, enabling the study of the long-lived steady stable boundary layer. With its homogeneous, flat snow surface, and extreme stabilities, the location is a natural laboratory for studies on the long-lived stable boundary layer. The two simulations differ only in the imposed geostrophic wind speed, which is identified as the main deciding factor for the resulting regime. In general, a good correspondence is found between the observed and simulated profiles of mean wind speed and temperature. Discrepancies in the temperature profiles are likely due to the exclusion of radiative transfer in the current simulations. The extreme stabilities result in a considerable contrast between the stable boundary layer at the Dome C site and that found at typical mid-latitudes. The boundary-layer height is found to range from approximately $$50\,\mathrm {m}$$50mto just $$5\,\mathrm {m}$$5min the most extreme case. Remarkably, heating of the boundary layer by subsidence may result in thermal equilibrium of the boundary layer in which the associated heating is balanced by the turbulent cooling towards the surface. Using centimetre-scale resolutions, accurate large-eddy simulations of the extreme stabilities encountered in Antarctica appear to be possible. However, future simulations should aim to include radiative transfer and sub-surface heat transport to increase the degree of realism of these types of simulations.  
  Programme 1013  
  Campaign  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1573-1472 ISBN Medium  
  Area Expedition Conference  
  Notes Approved yes  
  Call Number Serial 7709  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print