Select All    Deselect All
 |   | 
Details
   print
  Record Links
Author Christoph Kittel, Charles Amory, Cécile Agosta, Alison Delhasse, Sébastien Doutreloup, Pierre-Vincent Huot, Coraline Wyard, Thierry Fichefet, Xavier Fettweis doi  isbn
openurl 
  Title Sensitivity of the current Antarctic surface mass balance to sea surface conditions using MAR Type Journal
  Year (down) 2018 Publication The Cryosphere Abbreviated Journal  
  Volume 12 Issue 12 Pages 3827-3839  
  Keywords  
  Abstract

Abstract. Estimates for the recent period and projections of the Antarctic surface mass balance (SMB) often rely on high-resolution polar-oriented regional climate models (RCMs). However, RCMs require large-scale boundary forcing fields prescribed by reanalyses or general circulation models (GCMs). Since the recent variability of sea surface conditions (SSCs, namely sea ice concentration, SIC, and sea surface temperature, SST) over the Southern Ocean is not reproduced by most GCMs from the 5th phase of the Coupled Model Intercomparison Project (CMIP5), RCMs are then subject to potential biases. We investigate here the direct sensitivity of the Antarctic SMB to SSC perturbations around the Antarctic. With the RCM “Modèle Atmosphérique Régional” (MAR), different sensitivity experiments are performed over 1979–2015 by modifying the ERA-Interim SSCs with (i) homogeneous perturbations and (ii) mean anomalies estimated from all CMIP5 models and two extreme ones, while atmospheric lateral boundary conditions remained unchanged. Results show increased (decreased) precipitation due to perturbations inducing warmer, i.e. higher SST and lower SIC (colder, i.e. lower SST and higher SIC), SSCs than ERA-Interim, significantly affecting the SMB of coastal areas, as precipitation is mainly related to cyclones that do not penetrate far into the continent. At the continental scale, significant SMB anomalies (i.e greater than the interannual variability) are found for the largest combined SST/SIC perturbations. This is notably due to moisture anomalies above the ocean, reaching sufficiently high atmospheric levels to influence accumulation rates further inland. Sensitivity experiments with warmer SSCs based on the CMIP5 biases reveal integrated SMB anomalies (+5% to +13%) over the present climate (1979–2015) in the lower range of the SMB increase projected for the end of the 21st century.

 
  Programme 411  
  Campaign  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1994-0416 ISBN 1994-0416 Medium  
  Area Expedition Conference  
  Notes Approved yes  
  Call Number Serial 7365  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print