Select All    Deselect All
 |   | 
Details
   print
  Record Links
Author Frey M M, Roscoe H K, Kukui A, Savarino J, France J L, King M D, Legrand M, Preunkert S, doi  openurl
  Title Atmospheric nitrogen oxides (NO and NO2) at Dome C, East Antarctica, during the OPALE campaign Type Journal Article
  Year (down) 2015 Publication Atmospheric Chemistry and Physics Abbreviated Journal  
  Volume 15 Issue 14 Pages 7859-7875  
  Keywords  
  Abstract Mixing ratios of the atmospheric nitrogen oxides NO and NO2 were measured as part of the OPALE (Oxidant Production in Antarctic Lands & Export) campaign at Dome C, East Antarctica (75.1° S, 123.3° E, 3233 m), during December 2011 to January 2012. Profiles of NOx mixing ratios of the lower 100 m of the atmosphere confirm that, in contrast to the South Pole, air chemistry at Dome C is strongly influenced by large diurnal cycles in solar irradiance and a sudden collapse of the atmospheric boundary layer in the early evening. Depth profiles of mixing ratios in firn air suggest that the upper snowpack at Dome C holds a significant reservoir of photolytically produced NO2 and is a sink of gas-phase ozone (O3). First-time observations of bromine oxide (BrO) at Dome C show that mixing ratios of BrO near the ground are low, certainly less than 5 pptv, with higher levels in the free troposphere. Assuming steady state, observed mixing ratios of BrO and RO2 radicals are too low to explain the large NO2 : NO ratios found in ambient air, possibly indicating the existence of an unknown process contributing to the atmospheric chemistry of reactive nitrogen above the Antarctic Plateau. During 2011–2012, NOx mixing ratios and flux were larger than in 2009–2010, consistent with also larger surface O3 mixing ratios resulting from increased net O3 production. Large NOx mixing ratios at Dome C arise from a combination of continuous sunlight, shallow mixing height and significant NOx emissions by surface snow (FNOx). During 23 December 2011–12 January 2012, median FNOx was twice that during the same period in 2009–2010 due to significantly larger atmospheric turbulence and a slightly stronger snowpack source. A tripling of FNOx in December 2011 was largely due to changes in snowpack source strength caused primarily by changes in NO3- concentrations in the snow skin layer, and only to a secondary order by decrease of total column O3 and associated increase in NO3- photolysis rates. A source of uncertainty in model estimates of FNOx is the quantum yield of NO3- photolysis in natural snow, which may change over time as the snow ages.  
  Programme 903  
  Campaign  
  Address  
  Corporate Author Thesis  
  Publisher Copernicus GmbH Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1680-7316 ISBN Medium  
  Area Expedition Conference  
  Notes Approved yes  
  Call Number Serial 6156  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print