Select All    Deselect All
 |   | 
Details
   print
  Record Links
Author Genthon Christophe, Town Michael S, Six Delphine, Favier Vincent, Argentini Stefania, Pellegrini Andrea, doi  openurl
  Title Meteorological atmospheric boundary layer measurements and ECMWF analyses during summer at Dome C, Antarctica Type Journal Article
  Year (down) 2010 Publication J. Geophys. Res. Abbreviated Journal J. Geophys. Res.  
  Volume 115 Issue D5 Pages D05104 -  
  Keywords Antarctica, boundary layer, ECMWF, 3307 Atmospheric Processes: Boundary layer processes, 0798 Cryosphere: Modeling, 0394 Atmospheric Composition and Structure: Instruments and techniques,  
  Abstract Six levels of meteorological sensors have been deployed along a 45 m tower at the French-Italian Concordia station, Dome C, Antarctic. We present measurements of vertical profiles, the diurnal cycle, and interdiurnal variability of temperature, humidity, and wind speed and direction for 3 weeks during the southern summer of 2008. These measurements are compared to 6-hourly European Center for Medium-Range Forecasts (ECMWF) analyses and daily radiosoundings. The ECMWF analyses show a 3–4C warm bias relative to the tower observations. They reproduce the diurnal cycle of temperature with slightly weaker amplitude and weaker vertical gradients. The amplitude of the diurnal cycle of relative humidity is overestimated by ECMWF because the amplitude of the absolute humidity diurnal cycle is too small. The nighttime surface-based wind shear and Ekman spiral is also not reproduced in the ECMWF analyses. Radiosonde temperatures are biased low relative to the tower observations in the lowest 30 m but approach agreement at the top of the tower. Prior to bias correction for age-related contamination, radiosonde relative humidities are biased low relative to the tower observations in the lowest 10 m but agree with tower observations above this height. After correction for the age-related bias, the radiosonde relative humidity agrees with tower observations below 10 m but is biased high above this height. Tower temperature observations may also be biased by solar heating, despite radiation shielding and natural ventilation.
 
  Programme 1013  
  Campaign  
  Address  
  Corporate Author Thesis  
  Publisher AGU Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0148-0227 ISBN Medium  
  Area Expedition Conference  
  Notes Approved yes  
  Call Number Serial 480  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print