Select All    Deselect All
 |   | 
Details
   print
  Record Links
Author Plateaux Romain, Bergerat Françoise, Béthoux Nicole, Villemin Thierry, Gerbault Muriel, doi  openurl
  Title Implications of fracturing mechanisms and fluid pressure on earthquakes and fault slip data in the east Iceland rift zone Type Journal Article
  Year (down) 2011 Publication Tectonophysics Abbreviated Journal  
  Volume Issue Pages -  
  Keywords Icelandic rift, Stress permutation, Volcano-tectonics, Paleostresses, Fluid pore pressure, Fracturing mechanisms,  
  Abstract Comparison of the eroded off-rift zone left inactive by plate motion with the inner active seismic rift zone allows us to constrain the fracturing mechanisms. In eastern off-rift zone, we measured 423 fault slips (including normal and strike-slip faults). Inversion of fault slip data reveals the parallelism of the minimum stress (3) computed for the normal and for the strike-slip faulting, and consistency with the direction of plate divergence. North of the Vatnajökull, in the active rift zone, we analysed 14,250 earthquakes recorded by the Icelandic Meteorological Office (IMO) between 2004 and 2009, especially northeast of the Askja volcano. Two main average focal depths were determined at 5 km (Herðubreið table mountain) and 15 km (Upptyppingar hyaloclastite ridge). The double couple focal mechanisms determined by IMO revealed that more than half of the mechanisms are strike-slip. Faulting type both in active and off-rift zone reveals an unusual importance of strike-slip regime in such an extensional tectonic context. This can be explained by stress permutations (1/2). Similarities in terms of stress orientations and type of faulting are observed both in the old and present-day rift zones. We assume that the seismic events may be generated by rapid deep magma intrusion, also associated with shallower hydrothermal activities. We thus propose that the presence of fluids, shear failure (double couple focal mechanism) and stress permutations in both active and off-rift zones are closely linked. Assuming a DruckerPrager failure criterion, we evaluated analytically that a state near of lithostatic pore pressure is a necessary condition for shear failure at shallow (5 km) and deep (15 km) depth, in a simple context of crustal extension that allows for stress permutations. However, processes favouring stress permutations cannot be further constrained from our observations since the dynamics of fluid, materiel heterogeneity and post-glacial rebound can also play a significant role.  
  Programme 316  
  Campaign  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0040-1951 ISBN Medium  
  Area Expedition Conference  
  Notes Approved yes  
  Call Number Serial 3755  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print