Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Jean-Yves Toullec, Kévin Cascella, Stéphanie Ruault, Alexandre Geffroy, David Lorieux, Nicolas Montagné, Céline Ollivaux, Chi-Ying Lee doi  openurl
  Title Antarctic krill (Euphausia superba) in a warming ocean: thermotolerance and deciphering Hsp70 responses Type Journal
  Year 2020 Publication Cell Stress and Chaperones Abbreviated Journal  
  Volume 25 Issue 3 Pages 519-531  
  Keywords  
  Abstract The Antarctic krill, Euphausia superba, is a Southern Ocean endemic species of proven ecological importance to the region. In the context of predicted global warming, it is particularly important to understand how classic biomarkers of heat stress function in this species. In this respect, Hsp70s are acknowledged as good candidates. However, previous studies of expression kinetics have not been able to demonstrate significant upregulation of these genes in response to heat shocks at 3 °C and 6 °C for 3 and 6 h. The current work complements these previous results and broadens the prospects for the use of Hsp70s as a relevant marker of thermal shock in this krill species. New experiments demonstrate that induction of Hsp70 isoforms was not detected during exposure to heat shock, but increased expression was observed after several hours of recovery. To complete the analysis of the expression kinetics of the different isoforms, experiments were carried out over short time scales (1 and 2 h at 3 °C and 6 °C) as well as at higher temperatures (9 °C, 12 °C, and 15 °C for 3 h), without any significant response. A 6-week monitoring of animals at 3 °C showed that the time factor is decisive in the establishment of the response. CTmax experiments with incremental times of 1 °C per day or 1 °C every 3 days have shown a particularly high resilience of the animals. The demonstration of the abundance of Hsp70s present before thermal stress in various species of krill, as well as in specimens of E. superba of various origins, showed that the delay in the response in expression could be related to the high constitutive levels of Hsp70 available before the stress experiments. The alternative labelling of the two main isoforms of Hsp70 according to the origin of the animals allowed hypotheses to be put forward on the functioning of thermoregulation in Antarctic krill as well as ice krill.  
  Programme 1039  
  Campaign  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1466-1268 ISBN Medium  
  Area Expedition Conference  
  Notes Approved yes  
  Call Number Serial (down) 8173  
Permanent link to this record
 

 
Author Amandine Kaiser, Davide Faranda, Sebastian Krumscheid, Danijel Belušić, Nikki Vercauteren doi  openurl
  Title Detecting Regime Transitions of the Nocturnal and Polar Near-Surface Temperature Inversion Type Journal
  Year 2020 Publication Journal of the atmospheric sciences Abbreviated Journal  
  Volume 77 Issue 8 Pages 2921-2940  
  Keywords  
  Abstract Abstract Many natural systems undergo critical transitions, i.e., sudden shifts from one dynamical regime to another. In the climate system, the atmospheric boundary layer can experience sudden transitions between fully turbulent states and quiescent, quasi-laminar states. Such rapid transitions are observed in polar regions or at night when the atmospheric boundary layer is stably stratified, and they have important consequences in the strength of mixing with the higher levels of the atmosphere. To analyze the stable boundary layer, many approaches rely on the identification of regimes that are commonly denoted as weakly and very stable regimes. Detecting transitions between the regimes is crucial for modeling purposes. In this work a combination of methods from dynamical systems and statistical modeling is applied to study these regime transitions and to develop an early warning signal that can be applied to nonstationary field data. The presented metric aims to detect nearing transitions by statistically quantifying the deviation from the dynamics expected when the system is close to a stable equilibrium. An idealized stochastic model of near-surface inversions is used to evaluate the potential of the metric as an indicator of regime transitions. In this stochastic system, small-scale perturbations can be amplified due to the nonlinearity, resulting in transitions between two possible equilibria of the temperature inversion. The simulations show such noise-induced regime transitions, successfully identified by the indicator. The indicator is further applied to time series data from nocturnal and polar meteorological measurements.  
  Programme 1013  
  Campaign  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-4928, 1520-0469 ISBN Medium  
  Area Expedition Conference  
  Notes Approved yes  
  Call Number Serial (down) 8151  
Permanent link to this record
 

 
Author David H. Bromwich, Kirstin Werner, Barbara Casati, Jordan G. Powers, Irina V. Gorodetskaya, François Massonnet, Vito Vitale, Victoria J. Heinrich, Daniela Liggett, Stefanie Arndt, Boris Barja, Eric Bazile, Scott Carpentier, Jorge F. Carrasco, Taejin Choi, Yonghan Choi, Steven R. Colwell, Raul R. Cordero, Massimo Gervasi, Thomas Haiden, Naohiko Hirasawa, Jun Inoue, Thomas Jung, Heike Kalesse, Seong-Joong Kim, Matthew A. Lazzara, Kevin W. Manning, Kimberley Norris, Sang-Jong Park, Phillip Reid, Ignatius Rigor, Penny M. Rowe, Holger Schmithüsen, Patric Seifert, Qizhen Sun, Taneil Uttal, Mario Zannoni, Xun Zou doi  openurl
  Title The Year of Polar Prediction in the Southern Hemisphere (YOPP-SH) Type Journal
  Year 2020 Publication Bulletin of the american meteorological society Abbreviated Journal  
  Volume 101 Issue 10 Pages E1653-E1676  
  Keywords  
  Abstract Abstract The Year of Polar Prediction in the Southern Hemisphere (YOPP-SH) had a special observing period (SOP) that ran from 16 November 2018 to 15 February 2019, a period chosen to span the austral warm season months of greatest operational activity in the Antarctic. Some 2,200 additional radiosondes were launched during the 3-month SOP, roughly doubling the routine program, and the network of drifting buoys in the Southern Ocean was enhanced. An evaluation of global model forecasts during the SOP and using its data has confirmed that extratropical Southern Hemisphere forecast skill lags behind that in the Northern Hemisphere with the contrast being greatest between the southern and northern polar regions. Reflecting the application of the SOP data, early results from observing system experiments show that the additional radiosondes yield the greatest forecast improvement for deep cyclones near the Antarctic coast. The SOP data have been applied to provide insights on an atmospheric river event during the YOPP-SH SOP that presented a challenging forecast and that impacted southern South America and the Antarctic Peninsula. YOPP-SH data have also been applied in determinations that seasonal predictions by coupled atmosphere–ocean–sea ice models struggle to capture the spatial and temporal characteristics of the Antarctic sea ice minimum. Education, outreach, and communication activities have supported the YOPP-SH SOP efforts. Based on the success of this Antarctic summer YOPP-SH SOP, a winter YOPP-SH SOP is being organized to support explorations of Antarctic atmospheric predictability in the austral cold season when the southern sea ice cover is rapidly expanding.  
  Programme 1013  
  Campaign  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0003-0007, 1520-0477 ISBN Medium  
  Area Expedition Conference  
  Notes Approved yes  
  Call Number Serial (down) 8150  
Permanent link to this record
 

 
Author Gustavo Yunda-Guarin, Thomas A. Brown, Loïc N. Michel, Blanche Saint-Béat, Rémi Amiraux, Christian Nozais, Philippe Archambault doi  openurl
  Title Reliance of deep-sea benthic macrofauna on ice-derived organic matter highlighted by multiple trophic markers during spring in Baffin Bay, Canadian Arctic Type Journal
  Year 2020 Publication Elementa: Science of the Anthropocene Abbreviated Journal  
  Volume 8 Issue 1 Pages  
  Keywords  
  Abstract Benthic organisms depend primarily on seasonal pulses of organic matter from primary producers. In the Arctic, declines in sea ice due to warming climate could lead to changes in this food supply with as yet unknown effects on benthic trophic dynamics. Benthic consumer diets and food web structure were studied in a seasonally ice-covered region of Baffin Bay during spring 2016 at stations ranging in depth from 199 to 2,111 m. We used a novel combination of highly branched isoprenoid (HBI) lipid biomarkers and stable isotope ratios (δ13C, δ15N) to better understand the relationship between the availability of carbon sources in spring on the seafloor and their assimilation and transfer within the benthic food web. Organic carbon from sea ice (sympagic carbon [SC]) was an important food source for benthic consumers. The lipid biomarker analyses revealed a high relative contribution of SC in sediments (mean SC% ± standard deviation [SD] = 86% ± 16.0, n = 17) and in benthic consumer tissues (mean SC% ± SD = 78% ± 19.7, n = 159). We also detected an effect of sea-ice concentration on the relative contribution of SC in sediment and in benthic consumers. Cluster analysis separated the study region into three different zones according to the relative proportions of SC assimilated by benthic macrofauna. We observed variation of the benthic food web between zones, with increases in the width of the ecological niche in zones with less sea-ice concentration, indicating greater diversity of carbon sources assimilated by consumers. In zones with greater sea-ice concentration, the higher availability of SC increased the ecological role that primary consumers play in driving a stronger transfer of nutrients to higher trophic levels. Based on our results, SC is an important energy source for Arctic deep-sea benthos in Baffin Bay, such that changes in spring sea-ice phenology could alter benthic food-web structure.  
  Programme 1164  
  Campaign  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2325-1026 ISBN Medium  
  Area Expedition Conference  
  Notes Approved yes  
  Call Number Serial (down) 8119  
Permanent link to this record
 

 
Author Rémi Amiraux, Christopher Burot, Patricia Bonin, Guillaume Massé, Sophie Guasco, Marcel Babin, Frédéric Vaultier, Jean-François Rontani doi  openurl
  Title Stress factors resulting from the Arctic vernal sea-ice melt: Impact on the viability of bacterial communities associated with sympagic algae Type Journal
  Year 2020 Publication Elementa: Science of the Anthropocene Abbreviated Journal  
  Volume 8 Issue 1 Pages  
  Keywords  
  Abstract During sea-ice melt in the Arctic, primary production by sympagic (sea-ice) algae can be exported efficiently to the seabed if sinking rates are rapid and activities of associated heterotrophic bacteria are limited. Salinity stress due to melting ice has been suggested to account for such low bacterial activity. We further tested this hypothesis by analyzing samples of sea ice and sinking particles collected from May 18 to June 29, 2016, in western Baffin Bay as part of the Green Edge project. We applied a method not previously used in polar regions—quantitative PCR coupled to the propidium monoazide DNA-binding method—to evaluate the viability of bacteria associated with sympagic and sinking algae. We also measured cis-trans isomerase activity, known to indicate rapid bacterial response to salinity stress in culture studies, as well as free fatty acids known to be produced by algae as bactericidal compounds. The viability of sympagic-associated bacteria was strong in May (only approximately 10% mortality of total bacteria) and weaker in June (average mortality of 43%; maximum of 75%), with instances of elevated mortality in sinking particle samples across the time series (up to 72%). Short-term stress reflected by cis-trans isomerase activity was observed only in samples of sinking particles collected early in the time series. Following snow melt, however, and saturating levels of photosynthetically active radiation in June, we observed enhanced ice-algal production of bactericidal compounds (free palmitoleic acid; up to 4.8 mg L–1). We thus suggest that protection of sinking sympagic material from bacterial degradation early in a melt season results from low bacterial activity due to salinity stress, while later in the season, algal production of bactericidal compounds induces bacterial mortality. A succession of bacterial stressors during Arctic ice melt helps to explain the efficient export of sea-ice algal material to the seabed.  
  Programme 1164  
  Campaign  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2325-1026 ISBN Medium  
  Area Expedition Conference  
  Notes Approved yes  
  Call Number Serial (down) 8118  
Permanent link to this record
 

 
Author Julie Sansoulet, Michèle Therrien, Joseph Delgove, Guilhem Pouxviel, Julie Desriac, Noé Sardet, Jean-Paul Vanderlinden doi  isbn
openurl 
  Title An update on Inuit perceptions of their changing environment, Qikiqtaaluk (Baffin Island, Nunavut) Type Journal
  Year 2020 Publication Elementa: Science of the Anthropocene Abbreviated Journal  
  Volume 8 Issue 1 Pages  
  Keywords  
  Abstract The Inuit of Qikiqtaaluk (Baffin Island) have developed a deep respect for their natural environment and are able to report not only changes in weather, ice, and natural resources but also changes in their communities as a result of climate change. The objective of this study was to shed light on how the impacts of climate change are currently perceived in the communities of Kanngiqtugaapik, Pangniqtuuq, and Qikiqtarjuaq. In order to construct a shared knowledge base, we conducted qualitative video interviews and participated in a hunting camp with multigenerational and multigender Inuit hunters and fishers. First, Inuit continue to see the world in which they cohabit with other living things, particularly animals, as a world that they cannot control on their own—a world they must adapt to, passing learning from one generation to the next. Second, they report that changes in the ice have been among the major and most important transformations to have occurred in recent decades. Observations made by these local populations also indicate changes in hunted species, with fewer caribou and narwhal, more birds, insects, and fish, including from more southerly regions, and an uncertainty about polar bear populations. Seal hunting remains stable, and this meat is still the most popular and healthy food, physically and psychologically. Third, sociological and economic changes (e.g., lifestyle change, monetary economies, quotas), in addition to environmental changes (e.g., climate change, species change), have had a significant impact on food harvesting activities as well as food consumption in the region. A final perspective concerns the needs of the Qikiqtaaluk communities to further develop collaboration with scientists. This need for partnership is not only perceived as a scientific necessity but also recognized by Inuit as essential to their communities, with some local leaders ready to work toward a fruitful collaboration.  
  Programme 1164  
  Campaign  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2325-1026 ISBN 2325-1026 Medium  
  Area Expedition Conference  
  Notes Approved yes  
  Call Number Serial (down) 8117  
Permanent link to this record
 

 
Author Tonya M. Burgers, Jean-Éric Tremblay, Brent G. T. Else, Tim N. Papakyriakou doi  openurl
  Title Estimates of net community production from multiple approaches surrounding the spring ice-edge bloom in Baffin Bay Type Journal
  Year 2020 Publication Elementa: Science of the Anthropocene Abbreviated Journal  
  Volume 8 Issue 1 Pages  
  Keywords  
  Abstract Measurements of net community production (NCP) provide an upper constraint on the strength of the oceanic biological pump, the dominant mechanism for removing CO2 from the ocean surface and sequestering it at depth. In this investigation, our objectives were to describe the spatial and temporal variability of NCP associated with the spring ice-edge bloom in Baffin Bay and to identify the key environmental drivers controlling its variability. Using data collected between June 9 and July 10, 2016, we estimated NCP based on (1) underway measurements of surface water oxygen to argon ratios (O2:Ar), (2) underway measurements of the partial pressure of CO2, and (3) seasonal nitrate drawdown from discrete samples. These multiple approaches displayed high NCP (up to 5.7 mol C m–2) in eastern Baffin Bay, associated with modified Atlantic waters, and low NCP (<1 mol C m–2) in the presence of Arctic outflow waters in western Baffin Bay. Arctic outflow waters were characterized by low surface salinities and nitrate concentrations, suggesting that high freshwater content may have limited the nutrient availability of these waters. Different integration depths and timescales associated with each NCP approach were exploited to understand the temporal progression and succession of the bloom, revealing that the bloom was initiated under ice up to 15 days prior to ice retreat and that a large portion of NCP in eastern Baffin Bay (potentially up to 70%) was driven by primary production occurring below the surface-mixed layer.  
  Programme 1164  
  Campaign  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2325-1026 ISBN Medium  
  Area Expedition Conference  
  Notes Approved yes  
  Call Number Serial (down) 8116  
Permanent link to this record
 

 
Author Mathieu Ardyna, C. J. Mundy, Matthew M. Mills, Laurent Oziel, Pierre-Luc Grondin, Léo Lacour, Gauthier Verin, Gert van Dijken, Joséphine Ras, Eva Alou-Font, Marcel Babin, Michel Gosselin, Jean-Éric Tremblay, Patrick Raimbault, Philipp Assmy, Marcel Nicolaus, Hervé Claustre, Kevin R. Arrigo doi  openurl
  Title Environmental drivers of under-ice phytoplankton bloom dynamics in the Arctic Ocean Type Journal
  Year 2020 Publication Elementa: Science of the Anthropocene Abbreviated Journal  
  Volume 8 Issue 30 Pages  
  Keywords  
  Abstract The decline of sea-ice thickness, area, and volume due to the transition from multi-year to first-year sea ice has improved the under-ice light environment for pelagic Arctic ecosystems. One unexpected and direct consequence of this transition, the proliferation of under-ice phytoplankton blooms (UIBs), challenges the paradigm that waters beneath the ice pack harbor little planktonic life. Little is known about the diversity and spatial distribution of UIBs in the Arctic Ocean, or the environmental drivers behind their timing, magnitude, and taxonomic composition. Here, we compiled a unique and comprehensive dataset from seven major research projects in the Arctic Ocean (11 expeditions, covering the spring sea-ice-covered period to summer ice-free conditions) to identify the environmental drivers responsible for initiating and shaping the magnitude and assemblage structure of UIBs. The temporal dynamics behind UIB formation are related to the ways that snow and sea-ice conditions impact the under-ice light field. In particular, the onset of snowmelt significantly increased under-ice light availability (>0.1–0.2 mol photons m–2 d–1), marking the concomitant termination of the sea-ice algal bloom and initiation of UIBs. At the pan-Arctic scale, bloom magnitude (expressed as maximum chlorophyll a concentration) was predicted best by winter water Si(OH)4 and PO43– concentrations, as well as Si(OH)4:NO3– and PO43–:NO3– drawdown ratios, but not NO3– concentration. Two main phytoplankton assemblages dominated UIBs (diatoms or Phaeocystis), driven primarily by the winter nitrate:silicate (NO3–:Si(OH)4) ratio and the under-ice light climate. Phaeocystis co-dominated in low Si(OH)4 (i.e., NO3:Si(OH)4 molar ratios >1) waters, while diatoms contributed the bulk of UIB biomass when Si(OH)4 was high (i.e., NO3:Si(OH)4 molar ratios <1). The implications of such differences in UIB composition could have important ramifications for Arctic biogeochemical cycles, and ultimately impact carbon flow to higher trophic levels and the deep ocean.  
  Programme 1164  
  Campaign  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2325-1026 ISBN Medium  
  Area Expedition Conference  
  Notes Approved yes  
  Call Number Serial (down) 8115  
Permanent link to this record
 

 
Author Lisa C. Matthes, C. J. Mundy, S. L.-Girard, M. Babin, G. Verin, J. K. Ehn doi  isbn
openurl 
  Title Spatial Heterogeneity as a Key Variable Influencing Spring-Summer Progression in UVR and PAR Transmission Through Arctic Sea Ice Type Journal
  Year 2020 Publication Frontiers in Marine Science Abbreviated Journal  
  Volume 7 Issue Pages 183  
  Keywords  
  Abstract The transmission of ultraviolet (UVR) and photosynthetically available radiation (PAR) through sea ice is a key factor controlling under-ice phytoplankton growth in seasonally ice-covered waters. The increase toward sufficient light levels for positive net photosynthesis occurs concurrently with the sea ice melt progression in late spring when ice surface conditions shift from a relatively homogeneous high-albedo snow cover to a less reflective mosaic of bare ice and melt ponds. Here, we present a detailed dataset on the spatial and temporal progression of transmitted UVR and PAR in relation to changing quantities of snow, sea ice and melt ponds. Data were collected with a remotely operated vehicle (ROV) during the GreenEdge landfast sea ice campaign in June–July 2016 in southwestern Baffin Bay. Over the course of melt progression, there was a 10-fold increase in spatially averaged UVR and PAR transmission through the sea ice cover, reaching a maximum transmission of 31% for PAR, 7% for UVB, and 26% for UVA radiation. The depth under the sea ice experiencing spatial variability in light levels due to the influence of surface heterogeneity in snow, white ice and melt pond distributions increased from 7 ± 4 to 20 ± 6 m over our study. Phytoplankton drifting in under-ice surface waters were thus exposed to variations in PAR availability of up to 43%, highlighting the importance to account for spatial heterogeneity in light transmission through melting sea ice. Consequently, we demonstrate that spatial averages of PAR transmission provided more representative light availability estimates to explain under-ice bloom progression relative to single point irradiance measurements during the sea ice melt season. Encouragingly, the strong dichotomy between white ice and melt pond PAR transmittance and surface albedo permitted a very good estimate of spatially averaged light transmission from drone imagery of the surface and point transmittance measurements beneath different ice surface types.  
  Programme 1164  
  Campaign  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2296-7745 ISBN 2296-7745 Medium  
  Area Expedition Conference  
  Notes Approved yes  
  Call Number Serial (down) 8114  
Permanent link to this record
 

 
Author Blanche Saint-Béat, Brian D. Fath, Cyril Aubry, Jonathan Colombet, Julie Dinasquet, Louis Fortier, Virginie Galindo, Pierre-Luc Grondin, Fabien Joux, Catherine Lalande, Mathieu LeBlanc, Patrick Raimbault, Télesphore Sime-Ngando, Jean-Eric Tremblay, Daniel Vaulot, Frédéric Maps, Marcel Babin doi  openurl
  Title Contrasting pelagic ecosystem functioning in eastern and western Baffin Bay revealed by trophic network modeling Type Journal
  Year 2020 Publication Elementa: science of the anthropocene Abbreviated Journal  
  Volume 8 Issue 1 Pages  
  Keywords  
  Abstract Baffin Bay, located at the Arctic Ocean’s ‘doorstep’, is a heterogeneous environment where a warm and salty eastern current flows northwards in the opposite direction of a cold and relatively fresh Arctic current flowing along the west coast of the bay. This circulation affects the physical and biogeochemical environment on both sides of the bay. The phytoplanktonic species composition is driven by its environment and, in turn, shapes carbon transfer through the planktonic food web. This study aims at determining the effects of such contrasting environments on ecosystem structure and functioning and the consequences for the carbon cycle. Ecological indices calculated from food web flow values provide ecosystem properties that are not accessible by direct in situ measurement. From new biological data gathered during the Green Edge project, we built a planktonic food web model for each side of Baffin Bay, considering several biological processes involved in the carbon cycle, notably in the gravitational, lipid, and microbial carbon pumps. Missing flow values were estimated by linear inverse modeling. Calculated ecological network analysis indices revealed significant differences in the functioning of each ecosystem. The eastern Baffin Bay food web presents a more specialized food web that constrains carbon through specific and efficient pathways, leading to segregation of the microbial loop from the classical grazing chain. In contrast, the western food web showed redundant and shorter pathways that caused a higher carbon export, especially via lipid and microbial pumps, and thus promoted carbon sequestration. Moreover, indirect effects resulting from bottom-up and top-down control impacted pairwise relations between species differently and led to the dominance of mutualism in the eastern food web. These differences in pairwise relations affect the dynamics and evolution of each food web and thus might lead to contrasting responses to ongoing climate change.  
  Programme 1164  
  Campaign  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2325-1026 ISBN Medium  
  Area Expedition Conference  
  Notes Approved yes  
  Call Number Serial (down) 8113  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print