Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Catalina Morales-Yáñez, Zacharie Duputel, Luis Rivera doi  openurl
  Title Impact of 3-D Earth structure on W-phase CMT parameters Type Journal
  Year 2020 Publication (up) Geophysical Journal International Abbreviated Journal  
  Volume 223 Issue 2 Pages 1432-1445  
  Keywords  
  Abstract We investigate the impact of unmodelled 3-D structural heterogeneity on inverted W-phase source parameters. We generate a large data set of synthetic seismograms accounting for the Earths 3-D structure for 250 earthquakes globally distributed. The W-phase algorithm is then used to invert for earthquake CMT parameters, assuming a spherical Earth model. The impact of lateral heterogeneity is assessed by comparing inverted source parameters with those used to compute the 3-D synthetics. Results show that the 3-D structure mainly affects centroid location while the effect on the other source parameters remains small. Centroid mislocations present clear geographical patterns. In particular, W-phase solutions for earthquakes in South America are on average biased 17 km to the east of the actual centroid locations. This effect is significantly reduced using an azimuthally well balanced distribution of seismological stations. Source parameters are generally more impacted by mantle heterogeneity while the scalar moment of shallow earthquakes seems to be mainly impacted by the crustal structure. Shallow earthquakes present a variability of Mrθ and Mrϕ moment tensor elements, resulting both from the small amplitude and a larger uncertainty of the associated Green’s functions.  
  Programme 133  
  Campaign  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0956-540X ISBN Medium  
  Area Expedition Conference  
  Notes Approved yes  
  Call Number Serial 7890  
Permanent link to this record
 

 
Author Wenjie Lei, Youyi Ruan, Ebru Bozdağ, Daniel Peter, Matthieu Lefebvre, Dimitri Komatitsch, Jeroen Tromp, Judith Hill, Norbert Podhorszki, David Pugmire doi  openurl
  Title Global adjoint tomography—model GLAD-M25 Type Journal
  Year 2020 Publication (up) Geophysical Journal International Abbreviated Journal  
  Volume 223 Issue 1 Pages 1-21  
  Keywords  
  Abstract Building on global adjoint tomography model GLAD-M15, we present transversely isotropic global model GLAD-M25, which is the result of 10 quasi-Newton tomographic iterations with an earthquake database consisting of 1480 events in the magnitude range 5.5 ≤ Mw ≤ 7.2, an almost sixfold increase over the first-generation model. We calculated fully 3-D synthetic seismograms with a shortest period of 17 s based on a GPU-accelerated spectral-element wave propagation solver which accommodates effects due to 3-D anelastic crust and mantle structure, topography and bathymetry, the ocean load, ellipticity, rotation and self-gravitation. We used an adjoint-state method to calculate Fréchet derivatives in 3-D anelastic Earth models facilitated by a parsimonious storage algorithm. The simulations were performed on the Cray XK7 ‘Titan’ and the IBM Power 9 ‘Summit’ at the Oak Ridge Leadership Computing Facility. We quantitatively evaluated GLAD-M25 by assessing misfit reductions and traveltime anomaly histograms in 12 measurement categories. We performed similar assessments for a held-out data set consisting of 360 earthquakes, with results comparable to the actual inversion. We highlight the new model for a variety of plumes and subduction zones.  
  Programme 133  
  Campaign  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0956-540X ISBN Medium  
  Area Expedition Conference  
  Notes Approved yes  
  Call Number Serial 7990  
Permanent link to this record
 

 
Author Sarah Safieddine, Marie Bouillon, Ana-Claudia Paracho, Julien Jumelet, Florent Tencé, Andrea Pazmino, Florence Goutail, Catherine Wespes, Slimane Bekki, Anne Boynard, Juliette Hadji‐Lazaro, Pierre-François Coheur, Daniel Hurtmans, Cathy Clerbaux doi  isbn
openurl 
  Title Antarctic Ozone Enhancement During the 2019 Sudden Stratospheric Warming Event Type Journal
  Year 2020 Publication (up) Geophysical Research Letters Abbreviated Journal  
  Volume 47 Issue 14 Pages e2020GL087810  
  Keywords  
  Abstract We analyze the 2019 sudden stratospheric warming event that occurred in the Southern Hemisphere through its impact on the Antarctic ozone. Using temperature, ozone, and nitric acid data from the Infrared Atmospheric Sounding Interferometer (IASI), our results show that the average increase in stratospheric temperature reached a maximum of 34.4° on 20 September in the [60–90]°S latitude range when compared to the past 3 years. Dynamical parameters suggest a locally reversed and weakened zonal winds and a shift in the location of the polar jet vortex. This led to air masses mixing, to a reduced polar stratospheric clouds formation detected at a ground station, and as such to lower ozone and nitric acid depletion. 2019 total ozone columns for the months of September, October, and November were on average higher by 29%, 28%, and 26%, respectively, when compared to the 11-year average of the same months.  
  Programme 209  
  Campaign  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1944-8007 ISBN 1944-8007 Medium  
  Area Expedition Conference  
  Notes Approved yes  
  Call Number Serial 6954  
Permanent link to this record
 

 
Author Weisen Shen, Douglas A. Wiens, Andrew J. Lloyd, Andrew A. Nyblade doi  openurl
  Title A Geothermal Heat Flux Map of Antarctica Empirically Constrained by Seismic Structure Type Journal
  Year 2020 Publication (up) Geophysical Research Letters Abbreviated Journal  
  Volume 47 Issue 14 Pages e2020GL086955  
  Keywords Antarctica crust and uppermost mantle geothermal heat flux ice sheet modeling  
  Abstract The geothermal heat flux (GHF) is an important boundary condition for modeling the movement of the Antarctic ice sheet but is difficult to measure systematically at a continental scale. Earlier GHF maps suffer from low resolution and possibly biased assumptions in tectonism and crustal heat generation, resulting in significant uncertainty. We present a new GHF map for Antarctica constructed by empirically relating the upper mantle structure to known GHF in the continental United States. The new map, compared with previously seismologically determined one, has improved resolution and lower uncertainties. New features in this map include high GHF in the southern Transantarctic Mountains where warmer uppermost mantle is introduced by lithospheric removal and in the Thwaites Glacier region. Additionally, a modest GHF in the central West Antarctic Rift system near the Siple Coast and an absence of large-scale regions with GHF greater than 90 mW/m2 are found.  
  Programme 133  
  Campaign  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1944-8007 ISBN Medium  
  Area Expedition Conference  
  Notes Approved yes  
  Call Number Serial 7887  
Permanent link to this record
 

 
Author Renac Christophe, Moine Bertrand, Goudour Jean-Pierre, LeRomancer Marc, Perrache Chantal file  doi
openurl 
  Title Stable isotope study of rainfall, river drainage and hot springs of the kerguelen archipelago, SW Indian Ocean Type Journal
  Year 2020 Publication (up) Geothermics Abbreviated Journal  
  Volume 83 Issue Pages 101726  
  Keywords Geothermal springs Kerguelen archipelago Stable isotope composition Water-Rock interaction  
  Abstract This study is the first synthesis of chemical composition and stable isotopes values for the Kerguelen archipelago waters. The stable isotope values for rainfall and river waters in the Kerguelen archipelago allow a calculation of the Local Meteoric Water Line (δD rainfall = 8.43 x δ18O rainfall + 11) and a summer runoff line (δD river drainage = 7.45 x δ18O river drainage + 6). Surface waters with low- ion concentrations, chlorine facies and stable isotope values infiltrate through fractures and lava flows recharging deeper groundwaters. Thermal groundwater with low- (7 to 50 °C) and high- (50 to 100 °C) temperatures emerges in different localities in the volcanic archipelago. The low-temperature thermal waters might represent a mixture of high-temperature water with rainfall, thermal gradient changes or shallower infiltration compared to that for high-temperature thermal waters. The Rallier du Baty and Val Travers areas contain geothermal fluids with high-temperature springs, fumaroles and a large water flow. In the Rallier du Baty, the major ion chemistry and O, H, C and S stable isotope ratio of low (7 to 50 °C) temperature spring waters in Rallier du Baty area demonstrate a geothermal-system recharged by meteoric water (δD H2O liquid = 7.0 x δ18O H2O liquid + 0.5) rather than sea water. The chemical and isotopic compositions of elevated temperature spring waters (50 to 100 °C) have a long and complex history of meteoric water interacting with cooling magmas (δD H2O liquid = 1.78 x δ18O H2O liquid –  23). Surficial precipitation of aragonite, kaolinite, pyrite, native sulfur attest to a long livied geothermal system. A temperature of the geothermal reservoir has been estimated between 193 and 259 °C by cation geothermometry. The combination of minerals observed, major ion composition of water with thermodynamic modeling and stable isotope data suggest a geothermal system with a series of water/rock interactions from 50 to 250 °C. The conductive cooling of rising of H2O−CO2-rich fluids have produced a H2O−CO2 phase separation with the precipitation of secondary minerals.  
  Programme 408,444  
  Campaign  
  Address  
  Corporate Author Thesis Bachelor's thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0375-6505 ISBN Medium  
  Area Expedition Conference  
  Notes Approved yes  
  Call Number Serial 8262  
Permanent link to this record
 

 
Author Stéphanie Jenouvrier, Marika Holland, David Iles, Sara Labrousse, Laura Landrum, Jimmy Garnier, Hal Caswell, Henri Weimerskirch, Michelle LaRue, Rubao Ji, Christophe Barbraud doi  openurl
  Title The Paris Agreement objectives will likely halt future declines of emperor penguins Type Journal
  Year 2020 Publication (up) Global Change Biology Abbreviated Journal  
  Volume 26 Issue 3 Pages 1170-1184  
  Keywords Antarctica climate change mitigation dispersion emission reduction pledges seabirds  
  Abstract The Paris Agreement is a multinational initiative to combat climate change by keeping a global temperature increase in this century to 2°C above preindustrial levels while pursuing efforts to limit the increase to 1.5°C. Until recently, ensembles of coupled climate simulations producing temporal dynamics of climate en route to stable global mean temperature at 1.5 and 2°C above preindustrial levels were not available. Hence, the few studies that have assessed the ecological impact of the Paris Agreement used ad-hoc approaches. The development of new specific mitigation climate simulations now provides an unprecedented opportunity to inform ecological impact assessments. Here we project the dynamics of all known emperor penguin (Aptenodytes forsteri) colonies under new climate change scenarios meeting the Paris Agreement objectives using a climate-dependent-metapopulation model. Our model includes various dispersal behaviors so that penguins could modulate climate effects through movement and habitat selection. Under business-as-usual greenhouse gas emissions, we show that 80% of the colonies are projected to be quasiextinct by 2100, thus the total abundance of emperor penguins is projected to decline by at least 81% relative to its initial size, regardless of dispersal abilities. In contrast, if the Paris Agreement objectives are met, viable emperor penguin refuges will exist in Antarctica, and only 19% and 31% colonies are projected to be quasiextinct by 2100 under the Paris 1.5 and 2 climate scenarios respectively. As a result, the global population is projected to decline by at least by 31% under Paris 1.5 and 44% under Paris 2. However, population growth rates stabilize in 2060 such that the global population will be only declining at 0.07% under Paris 1.5 and 0.34% under Paris 2, thereby halting the global population decline. Hence, global climate policy has a larger capacity to safeguard the future of emperor penguins than their intrinsic dispersal abilities.  
  Programme 109  
  Campaign  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1365-2486 ISBN Medium  
  Area Expedition Conference  
  Notes Approved yes  
  Call Number Serial 7675  
Permanent link to this record
 

 
Author David T. Iles, Heather Lynch, Rubao Ji, Christophe Barbraud, Karine Delord, Stephanie Jenouvrier doi  openurl
  Title Sea ice predicts long-term trends in Adélie penguin population growth, but not annual fluctuations: Results from a range-wide multiscale analysis Type Journal
  Year 2020 Publication (up) Global Change Biology Abbreviated Journal  
  Volume 26 Issue 7 Pages 3788-3798  
  Keywords Antarctica environmental variation habitat suitability niche predictability state-space stochastic uncertainty  
  Abstract Understanding the scales at which environmental variability affects populations is critical for projecting population dynamics and species distributions in rapidly changing environments. Here we used a multilevel Bayesian analysis of range-wide survey data for Adélie penguins to characterize multidecadal and annual effects of sea ice on population growth. We found that mean sea ice concentration at breeding colonies (i.e., “prevailing” environmental conditions) had robust nonlinear effects on multidecadal population trends and explained over 85% of the variance in mean population growth rates among sites. In contrast, despite considerable year-to-year fluctuations in abundance at most breeding colonies, annual sea ice fluctuations often explained less than 10% of the temporal variance in population growth rates. Our study provides an understanding of the spatially and temporally dynamic environmental factors that define the range limits of Adélie penguins, further establishing this iconic marine predator as a true sea ice obligate and providing a firm basis for projection under scenarios of future climate change. Yet, given the weak effects of annual sea ice relative to the large unexplained variance in year-to-year growth rates, the ability to generate useful short-term forecasts of Adélie penguin breeding abundance will be extremely limited. Our approach provides a powerful framework for linking short- and longer term population processes to environmental conditions that can be applied to any species, facilitating a richer understanding of ecological predictability and sensitivity to global change.  
  Programme 109  
  Campaign  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1365-2486 ISBN Medium  
  Area Expedition Conference  
  Notes Approved yes  
  Call Number Serial 7682  
Permanent link to this record
 

 
Author Tuomas Kankaanpää, Eero Vesterinen, Bess Hardwick, Niels M. Schmidt, Tommi Andersson, Paul E. Aspholm, Isabel C. Barrio, Niklas Beckers, Joël Bêty, Tone Birkemoe, Melissa DeSiervo, Katherine H. I. Drotos, Dorothee Ehrich, Olivier Gilg, Vladimir Gilg, Nils Hein, Toke T. Høye, Kristian M. Jakobsen, Camille Jodouin, Jesse Jorna, Mikhail V. Kozlov, Jean-Claude Kresse, Don-Jean Leandri-Breton, Nicolas Lecomte, Maarten Loonen, Philipp Marr, Spencer K. Monckton, Maia Olsen, Josée-Anne Otis, Michelle Pyle, Ruben E. Roos, Katrine Raundrup, Daria Rozhkova, Brigitte Sabard, Aleksandr Sokolov, Natalia Sokolova, Anna M. Solecki, Christine Urbanowicz, Catherine Villeneuve, Evgenya Vyguzova, Vitali Zverev, Tomas Roslin doi  openurl
  Title Parasitoids indicate major climate-induced shifts in arctic communities Type Journal
  Year 2020 Publication (up) Global Change Biology Abbreviated Journal  
  Volume 26 Issue 11 Pages 6276-6295  
  Keywords Arctic climate change DNA barcoding Dryas food webs functional traits host–parasitoid interactions insect herbivory pollinators  
  Abstract Climatic impacts are especially pronounced in the Arctic, which as a region is warming twice as fast as the rest of the globe. Here, we investigate how mean climatic conditions and rates of climatic change impact parasitoid insect communities in 16 localities across the Arctic. We focus on parasitoids in a widespread habitat, Dryas heathlands, and describe parasitoid community composition in terms of larval host use (i.e., parasitoid use of herbivorous Lepidoptera vs. pollinating Diptera) and functional groups differing in their closeness of host associations (koinobionts vs. idiobionts). Of the latter, we expect idiobionts—as being less fine-tuned to host development—to be generally less tolerant to cold temperatures, since they are confined to attacking hosts pupating and overwintering in relatively exposed locations. To further test our findings, we assess whether similar climatic variables are associated with host abundances in a 22 year time series from Northeast Greenland. We find sites which have experienced a temperature rise in summer while retaining cold winters to be dominated by parasitoids of Lepidoptera, with the reverse being true for the parasitoids of Diptera. The rate of summer temperature rise is further associated with higher levels of herbivory, suggesting higher availability of lepidopteran hosts and changes in ecosystem functioning. We also detect a matching signal over time, as higher summer temperatures, coupled with cold early winter soils, are related to high herbivory by lepidopteran larvae, and to declines in the abundance of dipteran pollinators. Collectively, our results suggest that in parts of the warming Arctic, Dryas is being simultaneously exposed to increased herbivory and reduced pollination. Our findings point to potential drastic and rapid consequences of climate change on multitrophic-level community structure and on ecosystem functioning and highlight the value of collaborative, systematic sampling effort.  
  Programme 1036  
  Campaign  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1365-2486 ISBN Medium  
  Area Expedition Conference  
  Notes Approved yes  
  Call Number Serial 7686  
Permanent link to this record
 

 
Author M. O. Naumenko-Dèzes, Y. Rolland, G. Lamarque, G. Duclaux, S. Gallet, J. Bascou, R. P. Ménot doi  openurl
  Title Petrochronology of the Terre Adélie Craton (East Antarctica) evidences a long-lasting Proterozoic (1.7–1.5 Ga) tectono-metamorphic evolution — Insights for the connections with the Gawler Craton and Laurentia Type Journal
  Year 2020 Publication (up) Gondwana Research Abbreviated Journal  
  Volume 81 Issue Pages 21-57  
  Keywords Ar/Ar dating East Antarctica HT metamorphism Mafic magmatism P-T modelling Shear zones  
  Abstract The Terre Adélie Craton displays superimposed strain fields related to the Neoarchean (2.6–2.4 Ga, M1) and Paleo-Mesoproterozoic (1.7–1.5 Ga, M2) metamorphic events. M1 is a regional granulite facies event, constrained by P-T modelling at ~0.8–1.0 GPa – 800–850 °C, followed by a decompressional retrogression in the upper amphibolite facies at ~0.6 GPa – 750 °C. M2 Stage 1 P-T peak is constrained at 0.6–0.7 GPa – 670–700 °C, followed by a steep P-T path down to 0.3 GPa – 550 °C. Retrogression after M2 PT peak occurred in a context of dextral shearing along the Mertz Shear Zone along with thrust motions within the eastern Terre Adélie Craton. In this paper, we present a series of 63 new 40Ar/39Ar ages of biotite and amphibole pairs in mafic rocks from a complete traverse of the Terre Adélie Craton. 40Ar/39Ar dating constrains M2 amphibolite facies metamorphism at a regional scale between 1700 and 1650 Ma, during stage 1 peak metamorphism. During retrogression, lower amphibolite facies recrystallization mainly occurred along vertical shear zones and mafic dykes between 1650 and 1600 Ma (Stage 2), followed by amphibolite to greenschist facies metamorphism until after 1500 Ma (Stage 3). At the scale of the Mawson continent, this event is related to the growth of an active margin above an oblique subduction zone. The supra-subduction model best explains opening of Dumont D'Urville and Hunter basins at 1.71 Ga followed by their rapid closure and metamorphism at 1.70 Ga. In this context, episodic shear zone reactivation and magmatic dyke emplacement led to a partial reequilibration of the 40Ar/39Ar system until <1500 Ma. This latter phase of mafic magmatism largely coincides with a hot spot event at the scale of the Gawler Craton and western Laurentia paleocontinent.  
  Programme 1003  
  Campaign  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1342-937X ISBN Medium  
  Area Expedition Conference  
  Notes Approved yes  
  Call Number Serial 7643  
Permanent link to this record
 

 
Author Nicolas Crouzet, Abdelkrim Agabi, Tristan Guillot, Lyu Abe, François-Xavier Schmider, Djamel Mékarnia, Amaury H. M. J. Triaud, Yves Bresson, Nicolas Mauclert, Christophe Bailet, Dennis Breeveld, Sander Blommaert, Brian Shortt, Jean-Baptiste Daban, Anne-Marie Lagrange, Romain Touzé, Justin Dufour, Valentin Stee, Jocelyn Caruana doi  openurl
  Title Towards ASTEP+, a two-color photometric telescope at Dome C, Antarctica Type Peer-reviewed symposium
  Year 2020 Publication (up) Ground-based and Airborne Instrumentation for Astronomy VIII Abbreviated Journal  
  Volume 11447 Issue Pages 114470O  
  Keywords  
  Abstract Dome C, Antarctica is unique in particular for long-duration astronomical observations due to the excellent weather conditions and nearly uninterrupted nights during the Southern winter period. The 40 cm telescope ASTEP has been operating successfully at the Concordia base, at Dome C, since 2010. We describe the new ASTEP+, a major upgrade of its camera box which will allow it to observe simultaneously in two colors. Approximately three times more photons will be collected for science, yielding more sensitive and accurate observations. The southern location of the telescope means that it is ideally located to follow-up exoplanetary targets in preparation for the future JWST and Ariel observations, in particular when located in the southern continuous viewing zones of these space-based telescopes.  
  Programme 1066  
  Campaign  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved yes  
  Call Number Serial 7803  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print