Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Stephanie M. Harris, Sébastien Descamps, Lynne U. Sneddon, Philip Bertrand, Olivier Chastel, Samantha C. Patrick doi  isbn
openurl 
  Title Personality predicts foraging site fidelity and trip repeatability in a marine predator Type Journal
  Year 2020 Publication Journal of Animal Ecology Abbreviated Journal  
  Volume 89 Issue 1 Pages (down) 68-79  
  Keywords biologging boldness foraging niche width foraging specialization marine vertebrate movement ecology personality site fidelity  
  Abstract Animal populations are often comprised of both foraging specialists and generalists. For instance, some individuals show higher foraging site fidelity (spatial specialization) than others. Such individual differences in degree of specialization can persist over time-scales of months or even years in long-lived animals, but the mechanisms leading to these different individual strategies are not fully understood. There is accumulating evidence that individual variation in foraging behaviour is shaped by animal personality traits, such as boldness. Despite this, the potential for boldness to drive differences in the degree of specialization is unknown. In this study, we used novel object tests to measure boldness in black-legged kittiwakes (Rissa tridactyla) breeding at four colonies in Svalbard and deployed GPS loggers to examine their at-sea foraging behaviour. We estimated the repeatability of foraging trips and used a hidden Markov model to identify locations of foraging sites in order to quantify individual foraging site fidelity. Across the breeding season, bolder birds were more repeatable than shy individuals in the distance and range of their foraging trips, and during the incubation period (but not chick rearing), bolder individuals were more site-faithful. Birds exhibited these differences while showing high spatial similarity in foraging areas, indicating that site selection was not driven by personality-dependent spatial partitioning. We instead suggest that a relationship between boldness and site fidelity may be driven by differences in behavioural flexibility between bold and shy individuals. Together, these results provide a potential mechanism by which widely reported individual differences in foraging specialization may emerge.  
  Programme 330  
  Campaign  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1365-2656 ISBN 1365-2656 Medium  
  Area Expedition Conference  
  Notes Approved yes  
  Call Number Serial 7633  
Permanent link to this record
 

 
Author Marion Donat-Magnin, Nicolas C. Jourdain, Hubert Gallée, Charles Amory, Christoph Kittel, Xavier Fettweis, Jonathan D. Wille, Vincent Favier, Amine Drira, Cécile Agosta doi  openurl
  Title Interannual variability of summer surface mass balance and surface melting in the Amundsen sector, West Antarctica Type Journal
  Year 2020 Publication The Cryosphere Abbreviated Journal  
  Volume 14 Issue 1 Pages (down) 229-249  
  Keywords  
  Abstract

Abstract. Understanding the interannual variability of surface mass balance (SMB) and surface melting in Antarctica is key to quantify the signal-to-noise ratio in climate trends, identify opportunities for multi-year climate predictions and assess the ability of climate models to respond to climate variability. Here we simulate summer SMB and surface melting from 1979 to 2017 using the Regional Atmosphere Model (MAR) at 10 km resolution over the drainage basins of the Amundsen Sea glaciers in West Antarctica. Our simulations reproduce the mean present-day climate in terms of near-surface temperature (mean overestimation of 0.10 C), near-surface wind speed (mean underestimation of 0.42 m s−1), and SMB (relative bias <20 % over Thwaites glacier). The simulated interannual variability of SMB and melting is also close to observation-based estimates.

For all the Amundsen glacial drainage basins, the interannual variability of summer SMB and surface melting is driven by two distinct mechanisms: high summer SMB tends to occur when the Amundsen Sea Low (ASL) is shifted southward and westward, while high summer melt rates tend to occur when ASL is shallower (i.e. anticyclonic anomaly). Both mechanisms create a northerly flow anomaly that increases moisture convergence and cloud cover over the Amundsen Sea and therefore favors snowfall and downward longwave radiation over the ice sheet. The part of interannual summer SMB variance explained by the ASL longitudinal migrations increases westward and reaches 40 % for Getz. Interannual variation in the ASL relative central pressure is the largest driver of melt rate variability, with 11 % to 21 % of explained variance (increasing westward). While high summer SMB and melt rates are both favored by positive phases of El Niño–Southern Oscillation (ENSO), the Southern Oscillation Index (SOI) only explains 5 % to 16 % of SMB or melt rate interannual variance in our simulations, with moderate statistical significance. However, the part explained by SOI in the previous austral winter is greater, suggesting that at least a part of the ENSO–SMB and ENSO–melt relationships in summer is inherited from the previous austral winter. Possible mechanisms involve sea ice advection from the Ross Sea and intrusions of circumpolar deep water combined with melt-induced ocean overturning circulation in ice shelf cavities. Finally, we do not find any correlation with the Southern Annular Mode (SAM) in summer.

 
  Programme 411  
  Campaign  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1994-0416 ISBN Medium  
  Area Expedition Conference  
  Notes Approved yes  
  Call Number Serial 7640  
Permanent link to this record
 

 
Author Marine Duc doi  openurl
  Title “You are the Greenlandic one”. Saisir la place de la région d’origine dans la production de l’autochtonie chez les étudiant·e·s groenlandais·e·s au Danemark Type Journal
  Year 2020 Publication Espace populations sociétés. space populations societies Abbreviated Journal  
  Volume Issue 2020/1-2 Pages (down)  
  Keywords  
  Abstract En partant des expériences quotidiennes de minorisation rencontrées par des étudiant·e·s groenlandais·e·s au Danemark, je propose de voir comment l’imposition d’un stigmate territorial -comme sa négociation – participent à la production d’une autochtonie en tension. L’objectif de cet article est donc double. D’une part, en montrant comment les représentations de la région d’origine participent aux processus de racialisation, il s’agit de mettre en évidence la manière dont un ordre national chromatisé est performé au quotidien entre Danemark et Groenland. D’autre part, en montrant que la négociation de l’imposition du stigmate n’est pas la même selon les ressources dont disposent les individus, je soulignerai la nécessité de ne pas prendre la catégorie « peuples autochtones » comme un donné, mais au contraire, de penser l’autochtonie comme un positionnement social dynamique, qui se recompose selon les contextes, selon des logiques de race, de classe et de genre, mais également selon les trajectoires des individus.  
  Programme 1213  
  Campaign  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0755-7809 ISBN Medium  
  Area Expedition Conference  
  Notes Approved yes  
  Call Number Serial 7641  
Permanent link to this record
 

 
Author Philippe Ricaud, Massimo Del Guasta, Eric Bazile, Niramson Azouz, Angelo Lupi, Pierre Durand, Jean-Luc Attié, Dana Veron, Vincent Guidard, Paolo Grigioni doi  openurl
  Title Supercooled liquid water cloud observed, analysed, and modelled at the top of the planetary boundary layer above Dome C, Antarctica Type Journal
  Year 2020 Publication Atmospheric Chemistry and Physics Abbreviated Journal  
  Volume 20 Issue 7 Pages (down) 4167-4191  
  Keywords  
  Abstract

Abstract. A comprehensive analysis of the water budget over the Dome C (Concordia, Antarctica) station has been performed during the austral summer 2018–2019 as part of the Year of Polar Prediction (YOPP) international campaign. Thin (∼100 m deep) supercooled liquid water (SLW) clouds have been detected and analysed using remotely sensed observations at the station (tropospheric depolarization lidar, the H2O Antarctica Microwave Stratospheric and Tropospheric Radiometer (HAMSTRAD), net surface radiation from the Baseline Surface Radiation Network (BSRN)), radiosondes, and satellite observations (CALIOP, Cloud-Aerosol LIdar with Orthogonal Polarization/CALIPSO, Cloud Aerosol Lidar and Infrared Pathfinder Satellite Observations) combined with a specific configuration of the numerical weather prediction model: ARPEGE-SH (Action de Recherche Petite Echelle Grande Echelle – Southern Hemisphere). The analysis shows that SLW clouds were present from November to March, with the greatest frequency occurring in December and January when ∼50 % of the days in summer time exhibited SLW clouds for at least 1 h. Two case studies are used to illustrate this phenomenon. On 24 December 2018, the atmospheric planetary boundary layer (PBL) evolved following a typical diurnal variation, which is to say with a warm and dry mixing layer at local noon thicker than the cold and dry stable layer at local midnight. Our study showed that the SLW clouds were observed at Dome C within the entrainment and the capping inversion zones at the top of the PBL. ARPEGE-SH was not able to correctly estimate the ratio between liquid and solid water inside the clouds with the liquid water path (LWP) strongly underestimated by a factor of 1000 compared to observations. The lack of simulated SLW in the model impacted the net surface radiation that was 20–30 W m−2 higher in the BSRN observations than in the ARPEGE-SH calculations, mainly attributable to the BSRN longwave downward surface radiation being 50 W m−2 greater than that of ARPEGE-SH. The second case study took place on 20 December 2018, when a warm and wet episode impacted the PBL with no clear diurnal cycle of the PBL top. SLW cloud appearance within the entrainment and capping inversion zones coincided with the warm and wet event. The amount of liquid water measured by HAMSTRAD was ∼20 times greater in this perturbed PBL than in the typical PBL. Since ARPEGE-SH was not able to accurately reproduce these SLW clouds, the discrepancy between the observed and calculated net surface radiation was even greater than in the typical PBL case, reaching +50 W m−2, mainly attributable to the downwelling longwave surface radiation from BSRN being 100 W m−2 greater than that of ARPEGE-SH. The model was then run with a new partition function favouring liquid water for temperatures below −20 down to −40C. In this test mode, ARPEGE-SH has been able to generate SLW clouds with modelled LWP and net surface radiation consistent with observations during the typical case, whereas, during the perturbed case, the modelled LWP was 10 times less than the observations and the modelled net surface radiation remained lower than the observations by ∼50 W m−2. Accurately modelling the presence of SLW clouds appears crucial to correctly simulate the surface energy budget over the Antarctic Plateau.

 
  Programme 910  
  Campaign  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1680-7316 ISBN Medium  
  Area Expedition Conference  
  Notes Approved yes  
  Call Number Serial 7642  
Permanent link to this record
 

 
Author M. O. Naumenko-Dèzes, Y. Rolland, G. Lamarque, G. Duclaux, S. Gallet, J. Bascou, R. P. Ménot doi  openurl
  Title Petrochronology of the Terre Adélie Craton (East Antarctica) evidences a long-lasting Proterozoic (1.7–1.5 Ga) tectono-metamorphic evolution — Insights for the connections with the Gawler Craton and Laurentia Type Journal
  Year 2020 Publication Gondwana Research Abbreviated Journal  
  Volume 81 Issue Pages (down) 21-57  
  Keywords Ar/Ar dating East Antarctica HT metamorphism Mafic magmatism P-T modelling Shear zones  
  Abstract The Terre Adélie Craton displays superimposed strain fields related to the Neoarchean (2.6–2.4 Ga, M1) and Paleo-Mesoproterozoic (1.7–1.5 Ga, M2) metamorphic events. M1 is a regional granulite facies event, constrained by P-T modelling at ~0.8–1.0 GPa – 800–850 °C, followed by a decompressional retrogression in the upper amphibolite facies at ~0.6 GPa – 750 °C. M2 Stage 1 P-T peak is constrained at 0.6–0.7 GPa – 670–700 °C, followed by a steep P-T path down to 0.3 GPa – 550 °C. Retrogression after M2 PT peak occurred in a context of dextral shearing along the Mertz Shear Zone along with thrust motions within the eastern Terre Adélie Craton. In this paper, we present a series of 63 new 40Ar/39Ar ages of biotite and amphibole pairs in mafic rocks from a complete traverse of the Terre Adélie Craton. 40Ar/39Ar dating constrains M2 amphibolite facies metamorphism at a regional scale between 1700 and 1650 Ma, during stage 1 peak metamorphism. During retrogression, lower amphibolite facies recrystallization mainly occurred along vertical shear zones and mafic dykes between 1650 and 1600 Ma (Stage 2), followed by amphibolite to greenschist facies metamorphism until after 1500 Ma (Stage 3). At the scale of the Mawson continent, this event is related to the growth of an active margin above an oblique subduction zone. The supra-subduction model best explains opening of Dumont D'Urville and Hunter basins at 1.71 Ga followed by their rapid closure and metamorphism at 1.70 Ga. In this context, episodic shear zone reactivation and magmatic dyke emplacement led to a partial reequilibration of the 40Ar/39Ar system until <1500 Ma. This latter phase of mafic magmatism largely coincides with a hot spot event at the scale of the Gawler Craton and western Laurentia paleocontinent.  
  Programme 1003  
  Campaign  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1342-937X ISBN Medium  
  Area Expedition Conference  
  Notes Approved yes  
  Call Number Serial 7643  
Permanent link to this record
 

 
Author Dorothée Ehrich, Niels M. Schmidt, Gilles Gauthier, Ray Alisauskas, Anders Angerbjörn, Karin Clark, Frauke Ecke, Nina E. Eide, Erik Framstad, Jay Frandsen, Alastair Franke, Olivier Gilg, Marie-Andrée Giroux, Heikki Henttonen, Birger Hörnfeldt, Rolf A. Ims, Gennadiy D. Kataev, Sergey P. Kharitonov, Siw T. Killengreen, Charles J. Krebs, Richard B. Lanctot, Nicolas Lecomte, Irina E. Menyushina, Douglas W. Morris, Guy Morrisson, Lauri Oksanen, Tarja Oksanen, Johan Olofsson, Ivan G. Pokrovsky, Igor Yu. Popov, Donald Reid, James D. Roth, Sarah T. Saalfeld, Gustaf Samelius, Benoit Sittler, Sergey M. Sleptsov, Paul A. Smith, Aleksandr A. Sokolov, Natalya A. Sokolova, Mikhail Y. Soloviev, Diana V. Solovyeva doi  openurl
  Title Documenting lemming population change in the Arctic: Can we detect trends? Type Journal
  Year 2020 Publication Ambio Abbreviated Journal  
  Volume 49 Issue 3 Pages (down) 786-800  
  Keywords  
  Abstract Lemmings are a key component of tundra food webs and changes in their dynamics can affect the whole ecosystem. We present a comprehensive overview of lemming monitoring and research activities, and assess recent trends in lemming abundance across the circumpolar Arctic. Since 2000, lemmings have been monitored at 49 sites of which 38 are still active. The sites were not evenly distributed with notably Russia and high Arctic Canada underrepresented. Abundance was monitored at all sites, but methods and levels of precision varied greatly. Other important attributes such as health, genetic diversity and potential drivers of population change, were often not monitored. There was no evidence that lemming populations were decreasing in general, although a negative trend was detected for low arctic populations sympatric with voles. To keep the pace of arctic change, we recommend maintaining long-term programmes while harmonizing methods, improving spatial coverage and integrating an ecosystem perspective.  
  Programme 1036  
  Campaign  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1654-7209 ISBN Medium  
  Area Expedition Conference  
  Notes Approved yes  
  Call Number Serial 7646  
Permanent link to this record
 

 
Author Agnès Lewden, Andreas Nord, Batshéva Bonnet, Florent Chauvet, André Ancel, Dominic J. McCafferty doi  openurl
  Title Body surface rewarming in fully and partially hypothermic king penguins Type Journal
  Year 2020 Publication Journal of Comparative Physiology B Abbreviated Journal  
  Volume 190 Issue 5 Pages (down) 597-609  
  Keywords  
  Abstract Penguins face a major thermal transition when returning to land in a hypothermic state after a foraging trip. Uninsulated appendages (flippers and feet) could provide flexible heat exchange during subsequent rewarming. Here, we tested the hypothesis that peripheral vasodilation could be delayed during this recovery stage. To this end, we designed an experiment to examine patterns of surface rewarming in fully hypothermic (the cloaca and peripheral regions (here; flippers, feet and the breast) < 37 °C) and partially hypothermic (cloaca at normothermia ≥ 37 °C, but periphery at hypothermia) king penguins (Aptenodytes patagonicus) when they rewarmed in the laboratory. Both groups rewarmed during the 21 min observation period, but the temperature changes were larger in fully than in partially hypothermic birds. Moreover, we observed a 5 min delay of peripheral temperature in fully compared to partially hypothermic birds, suggesting that this process was impacted by low internal temperature. To investigate whether our laboratory data were applicable to field conditions, we also recorded surface temperatures of free-ranging penguins after they came ashore to the colony. Initial surface temperatures were lower in these birds compared to in those that rewarmed in the laboratory, and changed less over a comparable period of time on land. This could be explained both by environmental conditions and possible handling-induced thermogenesis in the laboratory. Nevertheless, this study demonstrated that appendage vasodilation is flexibly used during rewarming and that recovery may be influenced by both internal temperature and environmental conditions when penguins transition from sea to land.  
  Programme 394  
  Campaign  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1432-136X ISBN Medium  
  Area Expedition Conference  
  Notes Approved yes  
  Call Number Serial 7659  
Permanent link to this record
 

 
Author Rajesh Janardanan, Shamil Maksyutov, Aki Tsuruta, Fenjuan Wang, Yogesh K. Tiwari, Vinu Valsala, Akihiko Ito, Yukio Yoshida, Johannes W. Kaiser, Greet Janssens-Maenhout, Mikhail Arshinov, Motoki Sasakawa, Yasunori Tohjima, Douglas E. J. Worthy, Edward J. Dlugokencky, Michel Ramonet, Jgor Arduini, Jost V. Lavric, Salvatore Piacentino, Paul B. Krummel, Ray L. Langenfelds, Ivan Mammarella, Tsuneo Matsunaga doi  openurl
  Title Country-Scale Analysis of Methane Emissions with a High-Resolution Inverse Model Using GOSAT and Surface Observations Type Journal
  Year 2020 Publication Remote Sensing Abbreviated Journal  
  Volume 12 Issue 3 Pages (down) 375  
  Keywords anthropogenic GOSAT inverse model methane emission UNFCCC wetland  
  Abstract We employed a global high-resolution inverse model to optimize the CH4 emission using Greenhouse gas Observing Satellite (GOSAT) and surface observation data for a period from 2011–2017 for the two main source categories of anthropogenic and natural emissions. We used the Emission Database for Global Atmospheric Research (EDGAR v4.3.2) for anthropogenic methane emission and scaled them by country to match the national inventories reported to the United Nations Framework Convention on Climate Change (UNFCCC). Wetland and soil sink prior fluxes were simulated using the Vegetation Integrative Simulator of Trace gases (VISIT) model. Biomass burning prior fluxes were provided by the Global Fire Assimilation System (GFAS). We estimated a global total anthropogenic and natural methane emissions of 340.9 Tg CH4 yr−1 and 232.5 Tg CH4 yr−1, respectively. Country-scale analysis of the estimated anthropogenic emissions showed that all the top-emitting countries showed differences with their respective inventories to be within the uncertainty range of the inventories, confirming that the posterior anthropogenic emissions did not deviate from nationally reported values. Large countries, such as China, Russia, and the United States, had the mean estimated emission of 45.7 ± 8.6, 31.9 ± 7.8, and 29.8 ± 7.8 Tg CH4 yr−1, respectively. For natural wetland emissions, we estimated large emissions for Brazil (39.8 ± 12.4 Tg CH4 yr−1), the United States (25.9 ± 8.3 Tg CH4 yr−1), Russia (13.2 ± 9.3 Tg CH4 yr−1), India (12.3 ± 6.4 Tg CH4 yr−1), and Canada (12.2 ± 5.1 Tg CH4 yr−1). In both emission categories, the major emitting countries all had the model corrections to emissions within the uncertainty range of inventories. The advantages of the approach used in this study were: (1) use of high-resolution transport, useful for simulations near emission hotspots, (2) prior anthropogenic emissions adjusted to the UNFCCC reports, (3) combining surface and satellite observations, which improves the estimation of both natural and anthropogenic methane emissions over spatial scale of countries.  
  Programme 416  
  Campaign  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved yes  
  Call Number Serial 7660  
Permanent link to this record
 

 
Author Sophie M. Dupont, Christophe Barbraud, Olivier Chastel, Karine Delord, Charline Parenteau, Cécile Ribout, Frédéric Angelier doi  openurl
  Title Do repeated captures and handling affect phenotype and survival of growing Snow Petrel (Pagodroma nivea)? Type Journal
  Year 2020 Publication Polar Biology Abbreviated Journal  
  Volume 43 Issue 6 Pages (down) 637-646  
  Keywords  
  Abstract In vertebrates, developmental conditions can affect not only fledging success but also the phenotype of the offspring, with potential long-term consequences on adult performance. However, surprisingly the potential impact of anthropogenic disturbance on developing chicks is rarely investigated, notably in Antarctic wildlife. In this study, we specifically investigated the effects of repeated nest visits, capture, and handling on offspring survival and several complementary offspring phenotypic traits in the Snow Petrel (Pagodroma nivea) chicks after thermal emancipation. We did not find any significant effect of our disturbance protocol on the morphology (body size, body mass, body condition), the physiology (breath rate, stress-induced corticosterone levels) and the behaviour (defense behaviour) of developing Snow Petrels. This specific disturbance protocol did not have any significant effect on chick survival, but there was a non-significant trend towards a lower survival for the disturbed group (p = 0.1006), which showed an especially high mortality during a period of repeated snow storms. To conclude, investigator disturbance seems to have little effect on Snow Petrel chicks after thermal emancipation, but to remain cautious, we recommend to avoid capture and handling of Snow Petrel chicks during or soon after inclement weather.  
  Programme 109  
  Campaign  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1432-2056 ISBN Medium  
  Area Expedition Conference  
  Notes Approved yes  
  Call Number Serial 7661  
Permanent link to this record
 

 
Author T. Ouisse, E. Day, L. Laville, F. Hendrickx, P. Convey, D. Renault doi  openurl
  Title Effects of elevational range shift on the morphology and physiology of a carabid beetle invading the sub-Antarctic Kerguelen Islands Type Journal
  Year 2020 Publication Scientific Reports Abbreviated Journal  
  Volume 10 Issue 1 Pages (down) 1234  
  Keywords  
  Abstract Climatic changes can induce geographic expansion and altitudinal shifts in the distribution of invasive species by offering more thermally suitable habitats. At the remote sub-Antarctic Kerguelen Islands, the predatory insect Merizodus soledadinus (Coleoptera: Carabidae), introduced in 1913, rapidly invaded coastal habitats. More recent colonisation of higher elevation habitats by this species could be underlain by their increased thermal suitability as the area has warmed. This study compared the effect of elevational range shift on the morphology and physiology of adult M. soledadinus sampled along two altitudinal transects (from the foreshore to 250 m a.s.l.) and a horizontal lowland transect orthogonal to the seashore (400 m length). Although high inter-individual and inter-transect variations in the traits examined were present, we observed that body mass of males and females tended to decrease with elevation, and that triglyceride contents decreased with distance from the shore. Moreover, protein contents of females as well as those of 26 metabolites were influenced significantly by distance to the foreshore. These results suggest that future climate change at the Kerguelen Islands will further assist the colonisation of lowland inland and higher altitude habitats by this aggressively invasive predator, by making previously sub-optimal habitats progressively more suitable.  
  Programme 136  
  Campaign  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2045-2322 ISBN Medium  
  Area Expedition Conference  
  Notes Approved yes  
  Call Number Serial 7662  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print