Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Chengsheng Zhu, Maximilian Miller, Nicholas Lusskin, Benoît Bergk Pinto, Lorrie Maccario, Max Häggblom, Timothy Vogel, Catherine Larose, Yana Bromberg doi  openurl
  Title Snow microbiome functional analyses reveal novel aspects of microbial metabolism of complex organic compounds Type Journal
  Year 2020 Publication MicrobiologyOpen Abbreviated Journal  
  Volume 9 Issue 9 Pages e1100  
  Keywords metagenome metatranscriptome mi-faser snow microbiome  
  Abstract Microbes active in extreme cold are not as well explored as those of other extreme environments. Studies have revealed a substantial microbial diversity and identified cold-specific microbiome molecular functions. We analyzed the metagenomes and metatranscriptomes of 20 snow samples collected in early and late spring in Svalbard, Norway using mi-faser, our read-based computational microbiome function annotation tool. Our results reveal a more diverse microbiome functional capacity and activity in the early- vs. late-spring samples. We also find that functional dissimilarity between the same-sample metagenomes and metatranscriptomes is significantly higher in early than late spring samples. These findings suggest that early spring samples may contain a larger fraction of DNA of dormant (or dead) organisms, while late spring samples reflect a new, metabolically active community. We further show that the abundance of sequencing reads mapping to the fatty acid synthesis-related microbial pathways in late spring metagenomes and metatranscriptomes is significantly correlated with the organic acid levels measured in these samples. Similarly, the organic acid levels correlate with the pathway read abundances of geraniol degradation and inversely correlate with those of styrene degradation, suggesting a possible nutrient change. Our study thus highlights the activity of microbial degradation pathways of complex organic compounds previously unreported at low temperatures.  
  Programme 1192  
  Campaign (up)  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2045-8827 ISBN Medium  
  Area Expedition Conference  
  Notes Approved yes  
  Call Number Serial 7964  
Permanent link to this record
 

 
Author Alexandra T. Holland, Benoît Bergk Pinto, Rose Layton, Christopher J. Williamson, Alexandre M. Anesio, Timothy M. Vogel, Catherine Larose, Martyn Tranter doi  openurl
  Title Over Winter Microbial Processes in a Svalbard Snow Pack: An Experimental Approach Type Journal
  Year 2020 Publication Frontiers in Microbiology Abbreviated Journal  
  Volume 11 Issue Pages 1029  
  Keywords  
  Abstract Snow packs cover large expanses of Earth’s land surface, making them integral components of the cryosphere in terms of past climate and atmospheric proxies, surface albedo regulators, insulators for other Arctic environments and habitats for diverse microbial communities such as algae, bacteria and fungi. Yet, most of our current understanding of snow pack environments, specifically microbial activity and community interaction, is limited to the main microbial growing season during spring ablation. At present, little is known about microbial activity and its influence on nutrient cycling during the subfreezing temperatures and 24-h darkness of the polar winter. Here, we examined microbial dynamics in a simulated cold (−5°C), dark snow pack to determine polar winter season microbial activity and its dependence on critical nutrients. Snow collected from Ny-Ålesund, Svalbard was incubated in the dark over a 5-week period with four different nutrient additions, including glacial mineral particles, dissolved inorganic nitrogen (DIN), dissolved inorganic phosphorus (DIP) and a combined treatment of DIN plus DIP. Data indicate a consumption of dissolved inorganic nutrients, particularly DIN, by heterotrophic communities, suggesting a potential nitrogen limitation, contradictory to phosphorus limitations found in most aquatic environments. 16S amplicon sequencing also reveal a clear difference in microbial community composition in the particulate mineral treatment compared to dissolved nutrient treatments and controls, suggesting that certain species of heterotrophs living within the snow pack are more likely to associate with particulates. Particulate phosphorus analyses indicate a potential ability of heterotrophic communities to access particulate sources of phosphorous, possibly explaining the lack of phosphorus limitation. These findings have importance for understanding microbial activity during the polar winter season and its potential influences on the abundance and bioavailability of nutrients released to surface ice and downstream environments during the ablation season.  
  Programme 1192  
  Campaign (up)  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1664-302X ISBN Medium  
  Area Expedition Conference  
  Notes Approved yes  
  Call Number Serial 7965  
Permanent link to this record
 

 
Author Hanqin Tian, Rongting Xu, Josep G. Canadell, Rona L. Thompson, Wilfried Winiwarter, Parvadha Suntharalingam, Eric A. Davidson, Philippe Ciais, Robert B. Jackson, Greet Janssens-Maenhout, Michael J. Prather, Pierre Regnier, Naiqing Pan, Shufen Pan, Glen P. Peters, Hao Shi, Francesco N. Tubiello, Sönke Zaehle, Feng Zhou, Almut Arneth, Gianna Battaglia, Sarah Berthet, Laurent Bopp, Alexander F. Bouwman, Erik T. Buitenhuis, Jinfeng Chang, Martyn P. Chipperfield, Shree R. S. Dangal, Edward Dlugokencky, James W. Elkins, Bradley D. Eyre, Bojie Fu, Bradley Hall, Akihiko Ito, Fortunat Joos, Paul B. Krummel, Angela Landolfi, Goulven G. Laruelle, Ronny Lauerwald, Wei Li, Sebastian Lienert, Taylor Maavara, Michael MacLeod, Dylan B. Millet, Stefan Olin, Prabir K. Patra, Ronald G. Prinn, Peter A. Raymond, Daniel J. Ruiz, Guido R. van der Werf, Nicolas Vuichard, Junjie Wang, Ray F. Weiss, Kelley C. Wells, Chris Wilson, Jia Yang, Yuanzhi Yao doi  isbn
openurl 
  Title A comprehensive quantification of global nitrous oxide sources and sinks Type Journal
  Year 2020 Publication Nature Abbreviated Journal  
  Volume 586 Issue 7828 Pages 248-256  
  Keywords  
  Abstract Nitrous oxide (N2O), like carbon dioxide, is a long-lived greenhouse gas that accumulates in the atmosphere. Over the past 150 years, increasing atmospheric N2O concentrations have contributed to stratospheric ozone depletion1 and climate change2, with the current rate of increase estimated at 2 per cent per decade. Existing national inventories do not provide a full picture of N2O emissions, owing to their omission of natural sources and limitations in methodology for attributing anthropogenic sources. Here we present a global N2O inventory that incorporates both natural and anthropogenic sources and accounts for the interaction between nitrogen additions and the biochemical processes that control N2O emissions. We use bottom-up (inventory, statistical extrapolation of flux measurements, process-based land and ocean modelling) and top-down (atmospheric inversion) approaches to provide a comprehensive quantification of global N2O sources and sinks resulting from 21 natural and human sectors between 1980 and 2016. Global N2O emissions were 17.0 (minimum–maximum estimates: 12.2–23.5) teragrams of nitrogen per year (bottom-up) and 16.9 (15.9–17.7) teragrams of nitrogen per year (top-down) between 2007 and 2016. Global human-induced emissions, which are dominated by nitrogen additions to croplands, increased by 30% over the past four decades to 7.3 (4.2–11.4) teragrams of nitrogen per year. This increase was mainly responsible for the growth in the atmospheric burden. Our findings point to growing N2O emissions in emerging economies—particularly Brazil, China and India. Analysis of process-based model estimates reveals an emerging N2O–climate feedback resulting from interactions between nitrogen additions and climate change. The recent growth in N2O emissions exceeds some of the highest projected emission scenarios3,4, underscoring the urgency to mitigate N2O emissions.  
  Programme 416  
  Campaign (up)  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1476-4687 ISBN 1476-4687 Medium  
  Area Expedition Conference  
  Notes Approved yes  
  Call Number Serial 7968  
Permanent link to this record
 

 
Author Marielle Saunois, Ann R. Stavert, Ben Poulter, Philippe Bousquet, Josep G. Canadell, Robert B. Jackson, Peter A. Raymond, Edward J. Dlugokencky, Sander Houweling, Prabir K. Patra, Philippe Ciais, Vivek K. Arora, David Bastviken, Peter Bergamaschi, Donald R. Blake, Gordon Brailsford, Lori Bruhwiler, Kimberly M. Carlson, Mark Carrol, Simona Castaldi, Naveen Chandra, Cyril Crevoisier, Patrick M. Crill, Kristofer Covey, Charles L. Curry, Giuseppe Etiope, Christian Frankenberg, Nicola Gedney, Michaela I. Hegglin, Lena Höglund-Isaksson, Gustaf Hugelius, Misa Ishizawa, Akihiko Ito, Greet Janssens-Maenhout, Katherine M. Jensen, Fortunat Joos, Thomas Kleinen, Paul B. Krummel, Ray L. Langenfelds, Goulven G. Laruelle, Licheng Liu, Toshinobu Machida, Shamil Maksyutov, Kyle C. McDonald, Joe McNorton, Paul A. Miller, Joe R. Melton, Isamu Morino, Jurek Müller, Fabiola Murguia-Flores, Vaishali Naik, Yosuke Niwa, Sergio Noce, Simon O'Doherty, Robert J. Parker, Changhui Peng, Shushi Peng, Glen P. Peters, Catherine Prigent, Ronald Prinn, Michel Ramonet, Pierre Regnier, William J. Riley, Judith A. Rosentreter, Arjo Segers, Isobel J. Simpson, Hao Shi, Steven J. Smith, L. Paul Steele, Brett F. Thornton, Hanqin Tian, Yasunori Tohjima, Francesco N. Tubiello, Aki Tsuruta, Nicolas Viovy, Apostolos Voulgarakis, Thomas S. Weber, Michiel van Weele, Guido R. van der Werf, Ray F. Weiss, Doug Worthy, Debra Wunch, Yi Yin, Yukio Yoshida, Wenxin Zhang, Zhen Zhang, Yuanhong Zhao, Bo Zheng, Qing Zhu, Qiuan Zhu, Qianlai Zhuang doi  openurl
  Title The Global Methane Budget 2000–2017 Type Journal
  Year 2020 Publication Earth System Science Data Abbreviated Journal  
  Volume 12 Issue 3 Pages 1561-1623  
  Keywords  
  Abstract

Abstract. Understanding and quantifying the global methane (CH4) budget is important for assessing realistic pathways to mitigate climate change. Atmospheric emissions and concentrations of CH4 continue to increase, making CH4 the second most important human-influenced greenhouse gas in terms of climate forcing, after carbon dioxide (CO2). The relative importance of CH4 compared to CO2 depends on its shorter atmospheric lifetime, stronger warming potential, and variations in atmospheric growth rate over the past decade, the causes of which are still debated. Two major challenges in reducing uncertainties in the atmospheric growth rate arise from the variety of geographically overlapping CH4 sources and from the destruction of CH4 by short-lived hydroxyl radicals (OH). To address these challenges, we have established a consortium of multidisciplinary scientists under the umbrella of the Global Carbon Project to synthesize and stimulate new research aimed at improving and regularly updating the global methane budget. Following Saunois et al. (2016), we present here the second version of the living review paper dedicated to the decadal methane budget, integrating results of top-down studies (atmospheric observations within an atmospheric inverse-modelling framework) and bottom-up estimates (including process-based models for estimating land surface emissions and atmospheric chemistry, inventories of anthropogenic emissions, and data-driven extrapolations).

For the 2008–2017 decade, global methane emissions are estimated by atmospheric inversions (a top-down approach) to be 576 Tg CH4 yr−1 (range 550–594, corresponding to the minimum and maximum estimates of the model ensemble). Of this total, 359 Tg CH4 yr−1 or  60 % is attributed to anthropogenic sources, that is emissions caused by direct human activity (i.e. anthropogenic emissions; range 336–376 Tg CH4 yr−1 or 50 %–65 %). The mean annual total emission for the new decade (2008–2017) is 29 Tg CH4 yr−1 larger than our estimate for the previous decade (2000–2009), and 24 Tg CH4 yr−1 larger than the one reported in the previous budget for 2003–2012 (Saunois et al., 2016). Since 2012, global CH4 emissions have been tracking the warmest scenarios assessed by the Intergovernmental Panel on Climate Change. Bottom-up methods suggest almost 30 % larger global emissions (737 Tg CH4 yr−1, range 594–881) than top-down inversion methods. Indeed, bottom-up estimates for natural sources such as natural wetlands, other inland water systems, and geological sources are higher than top-down estimates. The atmospheric constraints on the top-down budget suggest that at least some of these bottom-up emissions are overestimated. The latitudinal distribution of atmospheric observation-based emissions indicates a predominance of tropical emissions ( 65 % of the global budget, < 30 N) compared to mid-latitudes ( 30 %, 30–60 N) and high northern latitudes ( 4 %, 60–90 N). The most important source of uncertainty in the methane budget is attributable to natural emissions, especially those from wetlands and other inland waters.

Some of our global source estimates are smaller than those in previously published budgets (Saunois et al., 2016; Kirschke et al., 2013). In particular wetland emissions are about 35 Tg CH4 yr−1 lower due to improved partition wetlands and other inland waters. Emissions from geological sources and wild animals are also found to be smaller by 7 Tg CH4 yr−1 by 8 Tg CH4 yr−1, respectively. However, the overall discrepancy between bottom-up and top-down estimates has been reduced by only 5 % compared to Saunois et al. (2016), due to a higher estimate of emissions from inland waters, highlighting the need for more detailed research on emissions factors. Priorities for improving the methane budget include (i) a global, high-resolution map of water-saturated soils and inundated areas emitting methane based on a robust classification of different types of emitting habitats; (ii) further development of process-based models for inland-water emissions; (iii) intensification of methane observations at local scales (e.g., FLUXNET-CH4 measurements) and urban-scale monitoring to constrain bottom-up land surface models, and at regional scales (surface networks and satellites) to constrain atmospheric inversions; (iv) improvements of transport models and the representation of photochemical sinks in top-down inversions; and (v) development of a 3D variational inversion system using isotopic and/or co-emitted species such as ethane to improve source partitioning.

The data presented here can be downloaded from https://doi.org/10.18160/GCP-CH4-2019 (Saunois et al., 2020) and from the Global Carbon Project.

 
  Programme 416  
  Campaign (up)  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1866-3508 ISBN Medium  
  Area Expedition Conference  
  Notes Approved yes  
  Call Number Serial 7969  
Permanent link to this record
 

 
Author M. Belke-Brea, F. Domine, S. Boudreau, G. Picard, M. Barrere, L. Arnaud, M. Paradis doi  openurl
  Title New Allometric Equations for Arctic Shrubs and Their Application for Calculating the Albedo of Surfaces with Snow and Protruding Branches Type Journal
  Year 2020 Publication Journal of Hydrometeorology Abbreviated Journal  
  Volume 21 Issue 11 Pages 2581-2594  
  Keywords  
  Abstract Arctic shrubs reduce surface albedo in winter when branches protrude above the snow. To calculate the albedo of those mixed surfaces, the branch area index (BAI) of Arctic shrubs needs to be known. Moreover, an exposed-vegetation function is required to determine the BAI for protruding branches only. This study used a structural analysis of 30 Betula glandulosa shrubs, sampled near Umiujaq, northern Quebec, to (i) establish an allometric relationship between shrub height and BAI and (ii) determine a specific exposed-vegetation function for Arctic shrubs. The spectral albedo (400–1080 nm) of mixed surfaces was then simulated with the equations derived from this study and validated with in situ measured spectra. Shrubs were sampled from two sites, one along the coast and the other in a nearby valley. The shrub height–BAI relationship varied between both sites. BAI values of shrubs growing in the wind-sheltered valley were 30%–50% lower. The exposed-vegetation function obtained here differed from the linear functions found in the literature. The linear functions strongly overestimated the BAI of exposed branches. Albedo was well simulated with an accuracy of 3% when using an allometric relationship adapted to the environmental conditions of our study site. However, simulated albedo values were consistently higher than field measurements, probably because radiation absorbed by impurities and buried branches was neglected in the model. We conclude that specific exposed-vegetation and allometric equations need to be implemented in models to accurately simulate the albedo of mixed snow–shrub surfaces.  
  Programme 1042  
  Campaign (up)  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1525-7541, 1525-755X ISBN Medium  
  Area Expedition Conference  
  Notes Approved yes  
  Call Number Serial 7970  
Permanent link to this record
 

 
Author M. Belke-Brea, F. Domine, M. Barrere, G. Picard, L. Arnaud doi  openurl
  Title Impact of Shrubs on Winter Surface Albedo and Snow Specific Surface Area at a Low Arctic Site: In Situ Measurements and Simulations Type Journal
  Year 2020 Publication Journal of Climate Abbreviated Journal  
  Volume 33 Issue 2 Pages 597-609  
  Keywords  
  Abstract Erect shrubs in the Arctic reduce surface albedo when branches protrude above the snow and modify snow properties, in particular specific surface area (SSA). Important consequences are changes in the land surface–atmosphere energy exchange and the increase of snow melting in autumn, possibly inducing reduced soil thermal insulation and in turn permafrost cooling. Near Umiujaq (56.5°N, 76.5°W) in the Canadian low Arctic where dwarf birches (Betula glandulosa) are expanding, spectral albedo (400–1080 nm) under diffuse light and vertical profiles of SSA were measured in November and December 2015 at four sites: three with protruding branches and one with only snow. At the beginning of the snow season (8 November), shrub-induced albedo reductions were found to be wavelength dependent and as high as 55% at 500 nm and 18% at 1000 nm, which, integrated over the measurement range (400–1080 nm), corresponds to 70 W m−2 of additional absorbed energy. The impact of shrubs is not just snow darkening. They also affect snow SSA in multiple ways, by accumulating snow with high SSA during cold windy precipitation and favoring SSA decrease by inducing melting during warm spells. However, the impact on the radiation budget of direct darkening from shrubs likely dominates over the indirect change in SSA. Spectral albedo was simulated with a linear mixing equation (LME), which fitted well with observed spectra. The average root-mean-square error was 0.009. We conclude that LMEs are a suitable tool to parameterize mixed surface albedo in snow and climate models.  
  Programme 1042  
  Campaign (up)  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0894-8755, 1520-0442 ISBN Medium  
  Area Expedition Conference  
  Notes Approved yes  
  Call Number Serial 7972  
Permanent link to this record
 

 
Author Isabelle Badenhausser, Lise Chambrin, Marc Lebouvier doi  isbn
openurl 
  Title Guide d'identification des plantes des îles sub-Antarctiques Crozet et Kerguelen Type Book
  Year 2020 Publication 1e édition, imprimerie nouvelle biard Abbreviated Journal  
  Volume Issue Pages 151 p  
  Keywords  
  Abstract  
  Programme 136  
  Campaign (up)  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN 978-2-7380-1440-5 Medium  
  Area Expedition Conference  
  Notes Approved yes  
  Call Number Serial 7975  
Permanent link to this record
 

 
Author Marc Lebouvier, Philippe Lambret, Alexia Garnier, Peter Convey, Yves Frenot, Philippe Vernon, David Renault doi  openurl
  Title Spotlight on the invasion of a carabid beetle on an oceanic island over a 105-year period Type Journal
  Year 2020 Publication Scientific Reports Abbreviated Journal  
  Volume 10 Issue 1 Pages 17103  
  Keywords  
  Abstract The flightless beetle Merizodus soledadinus, native to the Falkland Islands and southern South America, was introduced to the sub-Antarctic Kerguelen Islands in the early Twentieth Century. Using available literature data, in addition to collecting more than 2000 new survey (presence/absence) records of M. soledadinus over the 1991–2018 period, we confirmed the best estimate of the introduction date of M. soledadinus to the archipelago, and tracked subsequent changes in its abundance and geographical distribution. The range expansion of this flightless insect was initially slow, but has accelerated over the past 2 decades, in parallel with increased local abundance. Human activities may have facilitated further local colonization by M. soledadinus, which is now widespread in the eastern part of the archipelago. This predatory insect is a major threat to the native invertebrate fauna, in particular to the endemic wingless flies Anatalanta aptera and Calycopteryx moseleyi which can be locally eliminated by the beetle. Our distribution data also suggest an accelerating role of climate change in the range expansion of M. soledadinus, with populations now thriving in low altitude habitats. Considering that no control measures, let alone eradication, are practicable, it is essential to limit any further local range expansion of this aggressively invasive insect through human assistance. This study confirms the crucial importance of long term biosurveillance for the detection and monitoring of non-native species and the timely implementation of control measures.  
  Programme 136  
  Campaign (up)  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2045-2322 ISBN Medium  
  Area Expedition Conference  
  Notes Approved yes  
  Call Number Serial 7977  
Permanent link to this record
 

 
Author Nicolas Meyer, Loïc Bollache, François-Xavier Dechaume-Moncharmont, Jérôme Moreau, Eve Afonso, Anders Angerbjörn, Joël Bêty, Dorothée Ehrich, Vladimir Gilg, Marie-Andrée Giroux, Jannik Hansen, Richard B. Lanctot, Johannes Lang, Nicolas Lecomte, Laura McKinnon, Jeroen Reneerkens, Sarah T. Saalfeld, Brigitte Sabard, Niels M. Schmidt, Benoît Sittler, Paul Smith, Aleksandr Sokolov, Vasiliy Sokolov, Natalia Sokolova, Rob van Bemmelen, Olivier Gilg doi  openurl
  Title Nest attentiveness drives nest predation in arctic sandpipers Type Journal
  Year 2020 Publication Oikos Abbreviated Journal  
  Volume 129 Issue 10 Pages 1481-1492  
  Keywords Arctic shorebirds breeding behaviour incubation recesses incubation strategy nest survival parental care  
  Abstract Most birds incubate their eggs to allow embryo development. This behaviour limits the ability of adults to perform other activities. Hence, incubating adults trade off incubation and nest protection with foraging to meet their own needs. Parents can either cooperate to sustain this tradeoff or incubate alone. The main cause of reproductive failure at this reproductive stage is predation and adults reduce this risk by keeping the nest location secret. Arctic sandpipers are interesting biological models to investigate parental care evolution as they may use several parental care strategies. The three main incubation strategies include both parents sharing incubation duties (‘biparental’), one parent incubating alone (‘uniparental’), or a flexible strategy with both uniparental and biparental incubation within a population (‘mixed’). By monitoring the incubation behaviour in 714 nests of seven sandpiper species across 12 arctic sites, we studied the relationship between incubation strategy and nest predation. First, we described how the frequency of incubation recesses (NR), their mean duration (MDR), and the daily total duration of recesses (TDR) vary among strategies. Then, we examined how the relationship between the daily predation rate and these components of incubation behaviour varies across strategies using two complementary survival analysis. For uniparental and biparental species, the daily predation rate increased with the daily total duration of recesses and with the mean duration of recesses. In contrast, daily predation rate increased with the daily number of recesses for biparental species only. These patterns may be attributed to two independent mechanisms: cryptic incubating adults are more difficult to locate than unattended nests and adults departing the nest or feeding close to the nest can draw predators’ attention. Our results demonstrate that incubation behaviour as mediated by incubation strategy has important consequences for sandpipers’ reproductive success.  
  Programme 1036  
  Campaign (up)  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1600-0706 ISBN Medium  
  Area Expedition Conference  
  Notes Approved yes  
  Call Number Serial 7986  
Permanent link to this record
 

 
Author Manrico Sebastiano, Frédéric Angelier, Pierre Blévin, Cécile Ribout, Kjetil Sagerup, Sébastien Descamps, Dorte Herzke, Børge Moe, Christophe Barbraud, Jan Ove Bustnes, Geir Wing Gabrielsen, Olivier Chastel doi  openurl
  Title Exposure to PFAS is Associated with Telomere Length Dynamics and Demographic Responses of an Arctic Top Predator Type Journal
  Year 2020 Publication Environmental Science & Technology Abbreviated Journal  
  Volume 54 Issue 16 Pages 10217-10226  
  Keywords  
  Abstract Environmental factors that can influence telomeres are diverse, but the association between telomeres and exposure to environmental contaminants is yet to be elucidated. To date, prior studies have focused on legacy persistent chlorinated pollutants (POPs), while the effects of poly- and perfluoroalkyl substances (PFAS) have been poorly documented. Here, we investigated the associations among PFAS congeners, absolute telomere length (cross-sectional approach), and telomere dynamics (rate of telomere length change over time, longitudinal approach) in one of the most contaminated arctic top predators, the glaucous gull Larus hyperboreus from Svalbard. We further estimated the effect of PFAS on apparent survival rates and re-sighting probabilities using a 10-year capture/recapture dataset (2010–2019). We found that birds exposed to higher concentrations of perfluorononadecanoate (PFNA) (median of 1565 pg/mL of ww in males and 1370 pg/mL of ww in females) and perfluorotetradecanoate (PFTeDA) (median of 370 pg/mL of ww in males and 210 pg/mL of ww in females) showed the slowest rate of telomere shortening. We also found that high blood concentrations of perfluorooctanoate (PFOA) (median of 120 pg/mL of ww in males and 150 pg/mL of ww in females) and perfluorohexanesulfonate (PFHxS) (median of 495 pg/mL of ww in males and 395 pg/mL of ww in females) were positively associated with higher re-sighting probabilities and apparent survival in males but not in females. Our work is the first to report an association between single PFAS compounds and telomeres, and the first to link PFAS exposure with survival probabilities, suggesting that the effect of PFAS exposure might be more tied to the type of compound rather than the total concentration of PFAS.  
  Programme 330  
  Campaign (up)  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0013-936X ISBN Medium  
  Area Expedition Conference  
  Notes Approved yes  
  Call Number Serial 7989  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print