Select All    Deselect All
 |   | 
Details
   print
  Record Links
Author J Rojas, J Duprat, E Dartois, T-D Wu, C Engrand, B Augé, J Mathurin, B Guerin, J-L Guerquin-Kern, Ph Boduch, H Rothard openurl 
  Title Isotopic analyses of ion irradiation-induced organic residues, clues on the formation of organics from UCAMMS Type Peer-reviewed symposium
  Year 2020 Publication Lunar and Planetary Science, id 1630 Abbreviated Journal  
  Volume 51 Issue (up) Pages 1630  
  Keywords  
  Abstract Introduction: UltraCarbonaceous Antarctic Mi-croMeteorites (UCAMMs) are interplanetary dust particles that exhibit large concentrations of organic matter with high N concentrations and extreme D/H ratios [1-4]. The mineralogy, the elemental and isotopic composition of UCAMMs indicate that they most likely originate from the cometary reservoir [1, 2, 5]. Most UCAMMs exhibit large variations on D/H, 15 N/ 14 N and 13 C/ 12 C ratios at the micron or sub-micron scale. These isotopic fractionations are carried by the organic matter and their origin is still an open question. We showed that the precursors of UCAMMs can be formed by irradiation with high energy ions of N-rich ice mixtures with hydrocarbons, a process likely to take place at the surface of icy bodies orbiting beyond a nitrogen snow line and irradiated by galactic cosmic rays [2, 6]. Recent experimental simulations showed that the irradiation itself does not induce large D fractionation, but that the refractory organic residue resulting from irradiation of isotopically heterogeneous ice mixtures can exhibit large D/H spatial variation at the micron scale [7]. We performed a new series of experiments on D, 15 N and 13 C labelled ices to study the transmission of the isotopic labelled ice layers to the irradiation-induced residue. Material and method: Irradiation experiments of ices were conducted with the low-energy beam (Irrsud, 0.5-1 MeV/n) at GANIL (Caen, France). We used the IGLIAS experimental setup [8] which allows to deposit and irradiate complex ice films mixtures on substrate windows held at temperatures ranging from 8K to 300K (Figure 1). The evolution of the ices during the irradiation was monitored in situ with a Brucker Vertex 70v Fourier transform infrared (FTIR) spectrometer. The gas mixtures deposited are controlled with a Quadrupole Mass Spectrometer (QMS). We followed the same protocol as described in [7]. We first irradiated a mixture of ices made of two equally thick layers of 14 N2-CH4 (90:10) of about 5 µm each surrounding a thin layer of isotopically labeled (in D, 13 C and 15 N) ice with a thickness of about 0.2 µm. The ice films were formed by gas injections on ZnSe windows at 8K. The thickness of the central isotopically labeled ice layer was estimated from the volume of gases injected (i.e. 2% of the total thickness). The overall thickness of the ice sandwiches (11 µm) were  
  Programme 1120  
  Campaign  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved yes  
  Call Number Serial 7913  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print