Select All    Deselect All
 |   | 
Details
   print
  Record Links (down)
Author Barbero A. Grilli R., Blouzon C., Caillon N., Savarino, J. openurl 
  Title New Observations to Better Constrain NOx (NO + NO2) Concentrations on the Antarctic Plateau and to Resolve the Ambiguity in the NO2:NO Ratio Type Communication
  Year 2020 Publication AGU Fall Meeting 2020, 1-17 December 2020 San Francisco, USA Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract High southern latitude regions present specificities that are highly relevant for studying the climate in connection with the atmospheric chemistry. Contrary to regions of the rest of the world, Antarctica is still considered as a pristine environment not yet influenced by predominant anthropogenic emissions (with the notable exceptions of GHG) and thus represents the last continental-size natural laboratory. Polar snow-air-radiation interactions and the specific oxidant character of the polar atmosphere are key in order to decipher the right information buried in the ice and the current chemical stability of the polar atmosphere. Previous Antarctic campaigns have shown atmospheric similarities between the Antarctic Plateau (at Dome C, Concordia) and other regions. However, several differences are yet to be explained: the large NO2:NO ratios previously found in ambient air indicates the existence of an unknown source of NO2 above the Antarctic Plateau. These observations question either the reliability of previous measurements or the lack of our understanding of the NOx chemistry. Novel optical instruments based on the incoherent broadband cavity enhanced absorption spectroscopy technique (IBBCEAS) were developed. The instruments can measure simultaneously NO2, NOx and NO with detection limits of 11, 10 and 21 ppt, respectively (1σ) within 22 minutes of measurements. The two compact and transportable instruments were deployed during the 2019/20 Dome C summer campaign. Atmospheric measurements together with flux chamber experiments were performed for determining the snowpack NOx emissions and the NO2:NO ratio. The observations seem to differ from the conclusions of the previous Antarctic campaigns. Assuming steady state and maximum radiations, the theoretical NO2:NO ratio from the period observed in December was calculated to be 0.38 ± 0.15 and 0.31 ± 0.12 in January. The instruments measured a ratio close to steady state in December (0.25 ± 0.25) while the ratio observed in January (1.248 ± 0.792) indicates the presence of a strong NO oxidant or an unknown source of NO2. Flux chamber experiments on different types of snow were done during this campaign, and the results will help deepen our knowledge of Antarctic atmospheric chemistry.  
  Programme 1177  
  Campaign  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved yes  
  Call Number Serial 7864  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print