|   | 
Details
   web
Record
Author Juliana A. Vianna, Flávia A. N. Fernandes, María José Frugone, Henrique V. Figueiró, Luis R. Pertierra, Daly Noll, Ke Bi, Cynthia Y. Wang-Claypool, Andrew Lowther, Patricia Parker, Celine Le Bohec, Francesco Bonadonna, Barbara Wienecke, Pierre Pistorius, Antje Steinfurth, Christopher P. Burridge, Gisele P. M. Dantas, Elie Poulin, W. Brian Simison, Jim Henderson, Eduardo Eizirik, Mariana F. Nery, Rauri C. K. Bowie
Title Genome-wide analyses reveal drivers of penguin diversification Type Journal
Year (down) 2020 Publication Proceedings of the National Academy of Sciences Abbreviated Journal
Volume 117 Issue 36 Pages 22281-22292
Keywords ancestral distribution ancestral niche Antarctica genome penguin
Abstract Penguins are the only extant family of flightless diving birds. They currently comprise at least 18 species, distributed from polar to tropical environments in the Southern Hemisphere. The history of their diversification and adaptation to these diverse environments remains controversial. We used 22 new genomes from 18 penguin species to reconstruct the order, timing, and location of their diversification, to track changes in their thermal niches through time, and to test for associated adaptation across the genome. Our results indicate that the penguin crown-group originated during the Miocene in New Zealand and Australia, not in Antarctica as previously thought, and that Aptenodytes is the sister group to all other extant penguin species. We show that lineage diversification in penguins was largely driven by changing climatic conditions and by the opening of the Drake Passage and associated intensification of the Antarctic Circumpolar Current (ACC). Penguin species have introgressed throughout much of their evolutionary history, following the direction of the ACC, which might have promoted dispersal and admixture. Changes in thermal niches were accompanied by adaptations in genes that govern thermoregulation and oxygen metabolism. Estimates of ancestral effective population sizes (Ne) confirm that penguins are sensitive to climate shifts, as represented by three different demographic trajectories in deeper time, the most common (in 11 of 18 penguin species) being an increased Ne between 40 and 70 kya, followed by a precipitous decline during the Last Glacial Maximum. The latter effect is most likely a consequence of the overall decline in marine productivity following the last glaciation.
Programme 137,354
Campaign
Address
Corporate Author Thesis Bachelor's thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0027-8424, 1091-6490 ISBN Medium
Area Expedition Conference
Notes Approved yes
Call Number Serial 7780
Permanent link to this record