Select All    Deselect All
 |   | 
Details
   print
  Record Links
Author Eugénie Tessier, Charles-André Bost doi  openurl
  Title Behavioural adjustments during foraging in two diving seabirds: king and macaroni penguins Type Journal
  Year 2020 Publication Marine Biology Abbreviated Journal  
  Volume 167 Issue 9 Pages 138  
  Keywords  
  Abstract Optimal foraging theory predicts that diving predators should maximise their energy intake while minimizing the costs of their foraging activities at depth. This hypothesis was tested in two breath-hold divers that foraged in the pelagic waters off Kerguelen Island, southern Indian Ocean. Macaroni penguins (Eudyptes chrysolophus) feed predominately on crustaceans at moderate depths (ca. 50 m), while king penguins (Aptenodytes patagonicus) feed on mesopelagic fish at deep depths (ca. 100–150 m). We instrumented 22 penguins with time-depth recorders during the breeding season of the 2014 southern summer, just before they went to sea. Birds were recaptured after one to five foraging trips and the dive data were analysed on the level of single dive cycles and entire dive bouts. Both species adjusted their diving behaviour and modulated their foraging activity in accordance with their experience in their previous dives. Foraging activity during a dive (in terms of number of wiggles per dive) was greater if birds targeted the same depth as the previous dive. The penguins spent less time at the surface between two prey capture attempt dives than when a prey capture attempt dive was preceded by a non-prey capture attempt dive. Dive bout analyses showed that foraging activity increased with bout duration, while transit time during dives decreased with bout duration. Our findings are in general agreement with predictions based on optimal foraging models. The results suggest that penguins anticipated the depth of their next dive based on their encounter of a prey patch in the previous dive and optimized their chances of feeding success by spending minimal time at the surface and in transit to the patch depth. Once penguins detected a prey patch, these behavioural adjustments allowed them to rapidly return to that patch, increasing their chances of feeding again before the prey disperses.  
  Programme 394  
  Campaign  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1432-1793 ISBN Medium  
  Area Expedition Conference (up)  
  Notes Approved yes  
  Call Number Serial 7737  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print