Select All    Deselect All
 |   | 
Details
   print
  Records Links (up)
Author Blanche Saint-Béat, Brian D. Fath, Cyril Aubry, Jonathan Colombet, Julie Dinasquet, Louis Fortier, Virginie Galindo, Pierre-Luc Grondin, Fabien Joux, Catherine Lalande, Mathieu LeBlanc, Patrick Raimbault, Télesphore Sime-Ngando, Jean-Eric Tremblay, Daniel Vaulot, Frédéric Maps, Marcel Babin doi  openurl
  Title Contrasting pelagic ecosystem functioning in eastern and western Baffin Bay revealed by trophic network modeling Type Journal
  Year 2020 Publication Elementa: science of the anthropocene Abbreviated Journal  
  Volume 8 Issue 1 Pages  
  Keywords  
  Abstract Baffin Bay, located at the Arctic Ocean’s ‘doorstep’, is a heterogeneous environment where a warm and salty eastern current flows northwards in the opposite direction of a cold and relatively fresh Arctic current flowing along the west coast of the bay. This circulation affects the physical and biogeochemical environment on both sides of the bay. The phytoplanktonic species composition is driven by its environment and, in turn, shapes carbon transfer through the planktonic food web. This study aims at determining the effects of such contrasting environments on ecosystem structure and functioning and the consequences for the carbon cycle. Ecological indices calculated from food web flow values provide ecosystem properties that are not accessible by direct in situ measurement. From new biological data gathered during the Green Edge project, we built a planktonic food web model for each side of Baffin Bay, considering several biological processes involved in the carbon cycle, notably in the gravitational, lipid, and microbial carbon pumps. Missing flow values were estimated by linear inverse modeling. Calculated ecological network analysis indices revealed significant differences in the functioning of each ecosystem. The eastern Baffin Bay food web presents a more specialized food web that constrains carbon through specific and efficient pathways, leading to segregation of the microbial loop from the classical grazing chain. In contrast, the western food web showed redundant and shorter pathways that caused a higher carbon export, especially via lipid and microbial pumps, and thus promoted carbon sequestration. Moreover, indirect effects resulting from bottom-up and top-down control impacted pairwise relations between species differently and led to the dominance of mutualism in the eastern food web. These differences in pairwise relations affect the dynamics and evolution of each food web and thus might lead to contrasting responses to ongoing climate change.  
  Programme 1164  
  Campaign  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2325-1026 ISBN Medium  
  Area Expedition Conference  
  Notes Approved yes  
  Call Number Serial 8113  
Permanent link to this record
 

 
Author Augustin Lafond, Karine Leblanc, Bernard Quéguiner, Brivaela Moriceau, Aude Leynaert, Véronique Cornet, Justine Legras, Joséphine Ras, Marie Parenteau, Nicole Garcia, Marcel Babin, Jean-Éric Tremblay doi  openurl
  Title Late spring bloom development of pelagic diatoms in Baffin Bay Type Journal
  Year 2019 Publication Elementa: science of the anthropocene Abbreviated Journal  
  Volume 7 Issue Pages 44  
  Keywords  
  Abstract The Arctic Ocean is particularly affected by climate change, with changes in sea ice cover expected to impact phytoplankton primary production. During the Green Edge expedition, the development of the late spring–early summer diatom bloom was studied in relation with the sea ice retreat by multiple transects across the marginal ice zone. Biogenic silica concentrations and uptake rates were measured. In addition, diatom assemblage structures and their associated carbon biomass were determined, along with taxon-specific contributions to total biogenic silica production using the fluorescent dye PDMPO. Results indicate that a diatom bloom developed in open waters close to the ice edge, following the alleviation of light limitation, and extended 20–30 km underneath the ice pack. This actively growing diatom bloom (up to 0.19 μmol Si L–1 d–1) was associated with high biogenic silica concentrations (up to 2.15 μmol L–1), and was dominated by colonial fast-growing centric (Chaetoceros spp. and Thalassiosira spp.) and ribbon-forming pennate species (Fragilariopsis spp./Fossula arctica). The bloom remained concentrated over the shallow Greenland shelf and slope, in Atlantic-influenced waters, and weakened as it moved westwards toward ice-free Pacific-influenced waters. The development resulted in a near depletion of all nutrients eastwards of the bay, which probably induced the formation of resting spores of Melosira arctica. In contrast, under the ice pack, nutrients had not yet been consumed. Biogenic silica and uptake rates were still low (respectively <0.5 μmol L–1 and <0.05 μmol L–1 d–1), although elevated specific Si uptake rates (up to 0.23 d–1) probably reflected early stages of the bloom. These diatoms were dominated by pennate species (Pseudo-nitzschia spp., Ceratoneis closterium, and Fragilariopsis spp./Fossula arctica). This study can contribute to predictions of the future response of Arctic diatoms in the context of climate change.  
  Programme 1164  
  Campaign  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2325-1026 ISBN Medium  
  Area Expedition Conference  
  Notes Approved yes  
  Call Number Serial 8132  
Permanent link to this record
 

 
Author Rémi Amiraux, Lukas Smik, Denizcan Köseoğlu, Jean-François Rontani, Virginie Galindo, Pierre-Luc Grondin, Marcel Babin, Simon T. Belt doi  openurl
  Title Temporal evolution of IP25 and other highly branched isoprenoid lipids in sea ice and the underlying water column during an Arctic melting season Type Journal
  Year 2019 Publication Elementa: Science of the Anthropocene Abbreviated Journal  
  Volume 7 Issue Pages 38  
  Keywords  
  Abstract In recent years, certain mono- and di-unsaturated highly branched isoprenoid (HBI) alkene biomarkers (i.e., IP25 and HBI IIa) have emerged as useful proxies for sea ice in the Arctic and Antarctic, respectively. Despite the relatively large number of sea ice reconstructions based on IP25 and HBI IIa, considerably fewer studies have addressed HBI variability in sea ice or in the underlying water column during a spring bloom and ice melt season. In this study, we quantified IP25 and various other HBIs at high temporal and vertical resolution in sea ice and the underlying water column (suspended and sinking particulate organic matter) during a spring bloom/ice melt event in Baffin Bay (Canadian Arctic) as part of the Green Edge project. The IP25 data are largely consistent with those reported from some previous studies, but also highlight: (i) the short-term variability in its production in sea ice; (ii) the release of ice algae with high sinking rates following a switch in sea ice conditions from hyper- to hyposaline within the study period; and (iii) the occurrence of an under-ice phytoplankton bloom. Outcomes from change-point analysis conducted on chlorophyll a and IP25, together with estimates of the percentage of ice algal organic carbon in the water column, also support some previous investigations. The co-occurrence of other di- and tri-unsaturated HBIs (including the pelagic biomarker HBI III) in sea ice are likely to have originated from the diatom Berkeleya rutilans and/or the Pleurosigma and Rhizosolenia genera, residing either within the sea ice matrix or on its underside. Although a possible sea ice source for HBIs such as HBI III may also impact the use of such HBIs as pelagic counterparts to IP25 in the phytoplankton marker-IP25 index, we suggest that the impact is likely to be small based on HBI distribution data.  
  Programme 1164  
  Campaign  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2325-1026 ISBN Medium  
  Area Expedition Conference  
  Notes Approved yes  
  Call Number Serial 8128  
Permanent link to this record
 

 
Author L. Oziel, P. Massicotte, A. Randelhoff, J. Ferland, A. Vladoiu, L. Lacour, V. Galindo, S. Lambert-Girard, D. Dumont, Y. Cuypers, P. Bouruet-Aubertot, C.-J. Mundy, J. Ehn, G. Bécu, C. Marec, M.-H. Forget, N. Garcia, P. Coupel, P. Raimbault, M.-N. Houssais, M. Babin doi  openurl
  Title Environmental factors influencing the seasonal dynamics of spring algal blooms in and beneath sea ice in western Baffin Bay Type Journal
  Year 2019 Publication Elementa: Science of the Anthropocene Abbreviated Journal  
  Volume 7 Issue Pages 34  
  Keywords  
  Abstract Arctic sea ice is experiencing a shorter growth season and an earlier ice melt onset. The significance of spring microalgal blooms taking place prior to sea ice breakup is the subject of ongoing scientific debate. During the Green Edge project, unique time-series data were collected during two field campaigns held in spring 2015 and 2016, which documented for the first time the concomitant temporal evolution of the sea ice algal and phytoplankton blooms in and beneath the landfast sea ice in western Baffin Bay. Sea ice algal and phytoplankton blooms were negatively correlated and respectively reached 26 (6) and 152 (182) mg of chlorophyll a per m2 in 2015 (2016). Here, we describe and compare the seasonal evolutions of a wide variety of physical forcings, particularly key components of the atmosphere–snow–ice–ocean system, that influenced microalgal growth during both years. Ice algal growth was observed under low-light conditions before the snow melt period and was much higher in 2015 due to less snowfall. By increasing light availability and water column stratification, the snow melt onset marked the initiation of the phytoplankton bloom and, concomitantly, the termination of the ice algal bloom. This study therefore underlines the major role of snow on the seasonal dynamics of microalgae in western Baffin Bay. The under-ice water column was dominated by Arctic Waters. Just before the sea ice broke up, phytoplankton had consumed most of the nutrients in the surface layer. A subsurface chlorophyll maximum appeared and deepened, favored by spring tide-induced mixing, reaching the best compromise between light and nutrient availability. This deepening evidenced the importance of upper ocean tidal dynamics for shaping vertical development of the under-ice phytoplankton bloom, a major biological event along the western coast of Baffin Bay, which reached similar magnitude to the offshore ice-edge bloom.  
  Programme 1164  
  Campaign  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2325-1026 ISBN Medium  
  Area Expedition Conference  
  Notes Approved yes  
  Call Number Serial 8127  
Permanent link to this record
 

 
Author Margaux Gourdal, Odile Crabeck, Martine Lizotte, Virginie Galindo, Michel Gosselin, Marcel Babin, Michael Scarratt, Maurice Levasseur doi  openurl
  Title Upward transport of bottom-ice dimethyl sulfide during advanced melting of arctic first-year sea ice Type Journal
  Year 2019 Publication Elementa: Science of the Anthropocene Abbreviated Journal  
  Volume 7 Issue 33 Pages  
  Keywords  
  Abstract This paper presents the first empirical estimates of dimethyl sulfide (DMS) gas fluxes across permeable sea ice in the Arctic. DMS is known to act as a major potential source of aerosols that strongly influence the Earth’s radiative balance in remote marine regions during the ice-free season. Results from a sampling campaign, undertaken in 2015 between June 2 and June 28 in the ice-covered Western Baffin Bay, revealed the presence of high algal biomass in the bottom 0.1-m section of sea ice (21 to 380 µg Chl a L–1) combined with the presence of high DMS concentrations (212–840 nmol L–1). While ice algae acted as local sources of DMS in bottom sea ice, thermohaline changes within the brine network, from gravity drainage to vertical stabilization, exerted strong control on the distribution of DMS within the interior of the ice. We estimated both the mean DMS molecular diffusion coefficient in brine (5.2 × 10–5 cm2 s–1 ± 51% relative S.D., n = 10) and the mean bulk transport coefficient within sea ice (33 × 10–5 cm2 s–1 ± 41% relative S.D., n = 10). The estimated DMS fluxes ± S.D. from the bottom ice to the atmosphere ranged between 0.47 ± 0.08 µmol m–2 d–1 (n = 5, diffusion) and 0.40 ± 0.15 µmol m–2 d–1 (n = 5, bulk transport) during the vertically stable phase. These fluxes fall within the lower range of direct summer sea-to-air DMS fluxes reported in the Arctic. Our results indicate that upward transport of DMS, from the algal-rich bottom of first-year sea ice through the permeable sea ice, may represent an important pathway for this biogenic gas toward the atmosphere in ice-covered oceans in spring and summer.  
  Programme 1164  
  Campaign  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2325-1026 ISBN Medium  
  Area Expedition Conference  
  Notes Approved yes  
  Call Number Serial 8126  
Permanent link to this record
 

 
Author L. C. Matthes, J. K. Ehn, S. L.-Girard, N. M. Pogorzelec, M. Babin, C. J. Mundy doi  openurl
  Title Average cosine coefficient and spectral distribution of the light field under sea ice: Implications for primary production Type Journal
  Year 2019 Publication Elementa: Science of the Anthropocene Abbreviated Journal  
  Volume 7 Issue 25 Pages  
  Keywords  
  Abstract The Arctic spring phytoplankton bloom has been reported to commence under a melting sea ice cover as transmission of photosynthetically active radiation (PAR; 400–700 nm) suddenly increases with the formation of surface melt ponds. Spatial variability in ice surface characteristics, i.e., snow thickness or melt pond distributions, and subsequent impact on transmitted PAR makes estimating light-limited primary production difficult during this time of year. Added to this difficulty is the interpretation of data from various sensor types, including hyperspectral, multispectral, and PAR-band irradiance sensors, with either cosine-corrected (planar) or spherical (scalar) sensor heads. To quantify the impact of the heterogeneous radiation field under sea ice, spectral irradiance profiles were collected beneath landfast sea ice during the Green Edge ice-camp campaigns in May–June 2015 and June–July 2016. Differences between PAR measurements are described using the downwelling average cosine, μd, a measure of the degree of anisotropy of the downwelling underwater radiation field which, in practice, can be used to convert between downwelling scalar, E0d, and planar, Ed, irradiance. A significantly smallerμd(PAR) was measured prior to snow melt compared to after (0.6 vs. 0.7) when melt ponds covered the ice surface. The impact of the average cosine on primary production estimates, shown in the calculation of depth-integrated daily production, was 16% larger under light-limiting conditions when E0d was used instead of Ed. Under light-saturating conditions, daily production was only 3% larger. Conversion of underwater irradiance data also plays a role in the ratio of total quanta to total energy (EQ/EW, found to be 4.25), which reflects the spectral shape of the under-ice light field. We use these observations to provide factors for converting irradiance measurements between irradiance detector types and units as a function of surface type and depth under sea ice, towards improving primary production estimates.  
  Programme 1164  
  Campaign  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2325-1026 ISBN Medium  
  Area Expedition Conference  
  Notes Approved yes  
  Call Number Serial 8124  
Permanent link to this record
 

 
Author Achim Randelhoff, Laurent Oziel, Philippe Massicotte, Guislain Bécu, Martí Galí, Léo Lacour, Dany Dumont, Anda Vladoiu, Claudie Marec, Flavienne Bruyant, Marie-Noëlle Houssais, Jean-Éric Tremblay, Gabrièle Deslongchamps, Marcel Babin doi  openurl
  Title The evolution of light and vertical mixing across a phytoplankton ice-edge bloom Type Journal
  Year 2019 Publication Elementa: Science of the Anthropocene Abbreviated Journal  
  Volume 7 Issue 20 Pages  
  Keywords  
  Abstract During summer, phytoplankton can bloom in the Arctic Ocean, both in open water and under ice, often strongly linked to the retreating ice edge. There, the surface ocean responds to steep lateral gradients in ice melt, mixing, and light input, shaping the Arctic ecosystem in unique ways not found in other regions of the world ocean. In 2016, we sampled a high-resolution grid of 135 hydrographic stations in Baffin Bay as part of the Green Edge project to study the ice-edge bloom, including turbulent vertical mixing, the under-ice light field, concentrations of inorganic nutrients, and phytoplankton biomass. We found pronounced differences between an Atlantic sector dominated by the warm West Greenland Current and an Arctic sector with surface waters originating from the Canadian archipelago. Winter overturning and thus nutrient replenishment was hampered by strong haline stratification in the Arctic domain, whereas close to the West Greenland shelf, weak stratification permitted winter mixing with high-nitrate Atlantic-derived waters. Using a space-for-time approach, we linked upper ocean dynamics to the phytoplankton bloom trailing the retreating ice edge. In a band of 60 km (or 15 days) around the ice edge, the upper ocean was especially affected by a freshened surface layer. Light climate, as evidenced by deep 0.415 mol m–2 d–1 isolumes, and vertical mixing, as quantified by shallow mixing layer depths, should have permitted significant net phytoplankton growth more than 100 km into the pack ice at ice concentrations close to 100%. Yet, under-ice biomass was relatively low at 20 mg chlorophyll-a m–2 and depth-integrated total chlorophyll-a (0–80 m) peaked at an average value of 75 mg chlorophyll-a m–2 only around 10 days after ice retreat. This phenological peak may hence have been the delayed result of much earlier bloom initiation and demonstrates the importance of temporal dynamics for constraints of Arctic marine primary production.  
  Programme 1164  
  Campaign  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2325-1026 ISBN Medium  
  Area Expedition Conference  
  Notes Approved yes  
  Call Number Serial 8123  
Permanent link to this record
 

 
Author Mathieu LeBlanc, Stéphane Gauthier, Svend Erik Garbus, Anders Mosbech, Louis Fortier doi  openurl
  Title The co-distribution of Arctic cod and its seabird predators across the marginal ice zone in Baffin Bay Type Journal
  Year 2019 Publication Elementa: Science of the Anthropocene Abbreviated Journal  
  Volume 7 Issue 1 Pages  
  Keywords  
  Abstract Arctic cod (Boreogadus saida) is the dominant pelagic fish in Arctic seas and a staple food of many arctic predators including several seabird species. Marginal ice zones are known as important feeding locations for seabirds. The hypothesis that thick-billed murre (Uria lomvia), northern fulmar (Fulmarus glacialis) and black-legged kittiwake (Rissa tridactyla) congregate in areas of high Arctic cod food resource and low ice concentration was tested at different spatial scales. Arctic cod biomass was estimated by hydroacoustics as a resource proxy, and seabirds were counted and sampled for stomach analysis along eight longitudinal transects across the marginal ice zone in southern Baffin Bay in June–July 2016. With increasing length, the epipelagic age-0 Arctic cod migrated from open waters to ice-covered areas. Subsequently, age-1 and age-2 Arctic cod tended to concentrate in a subsurface layer (40–100 m) within the epipelagic layer. Arctic cod 5.7–16.1 cm long (late age-0 to age-5) were the main fish prey of the three seabird species, which preferentially captured age-1 cod (6–11.5 cm). At large spatial scale (western versus eastern Baffin Bay), thick-billed murre, northern fulmar and their Arctic cod resource proxy were generally more abundant on the western ice-covered side of Baffin Bay. No clear spatial match was found, however, when comparing seabird abundances and their food-resource proxy in different ice concentrations across the marginal ice zone or at small scale (5 km). At medium scale (12.5 km), only murre density was influenced positively by its Arctic cod resource. A lack of schooling behavior and a successful strategy to avoid predation by hiding under the ice could explain the absence of any strong spatial match between Arctic cod and its seabird predators at these different scales.  
  Programme 1164  
  Campaign  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2325-1026 ISBN Medium  
  Area Expedition Conference  
  Notes Approved yes  
  Call Number Serial 8121  
Permanent link to this record
 

 
Author Gustavo Yunda-Guarin, Thomas A. Brown, Loïc N. Michel, Blanche Saint-Béat, Rémi Amiraux, Christian Nozais, Philippe Archambault doi  openurl
  Title Reliance of deep-sea benthic macrofauna on ice-derived organic matter highlighted by multiple trophic markers during spring in Baffin Bay, Canadian Arctic Type Journal
  Year 2020 Publication Elementa: Science of the Anthropocene Abbreviated Journal  
  Volume 8 Issue 1 Pages  
  Keywords  
  Abstract Benthic organisms depend primarily on seasonal pulses of organic matter from primary producers. In the Arctic, declines in sea ice due to warming climate could lead to changes in this food supply with as yet unknown effects on benthic trophic dynamics. Benthic consumer diets and food web structure were studied in a seasonally ice-covered region of Baffin Bay during spring 2016 at stations ranging in depth from 199 to 2,111 m. We used a novel combination of highly branched isoprenoid (HBI) lipid biomarkers and stable isotope ratios (δ13C, δ15N) to better understand the relationship between the availability of carbon sources in spring on the seafloor and their assimilation and transfer within the benthic food web. Organic carbon from sea ice (sympagic carbon [SC]) was an important food source for benthic consumers. The lipid biomarker analyses revealed a high relative contribution of SC in sediments (mean SC% ± standard deviation [SD] = 86% ± 16.0, n = 17) and in benthic consumer tissues (mean SC% ± SD = 78% ± 19.7, n = 159). We also detected an effect of sea-ice concentration on the relative contribution of SC in sediment and in benthic consumers. Cluster analysis separated the study region into three different zones according to the relative proportions of SC assimilated by benthic macrofauna. We observed variation of the benthic food web between zones, with increases in the width of the ecological niche in zones with less sea-ice concentration, indicating greater diversity of carbon sources assimilated by consumers. In zones with greater sea-ice concentration, the higher availability of SC increased the ecological role that primary consumers play in driving a stronger transfer of nutrients to higher trophic levels. Based on our results, SC is an important energy source for Arctic deep-sea benthos in Baffin Bay, such that changes in spring sea-ice phenology could alter benthic food-web structure.  
  Programme 1164  
  Campaign  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2325-1026 ISBN Medium  
  Area Expedition Conference  
  Notes Approved yes  
  Call Number Serial 8119  
Permanent link to this record
 

 
Author Makoto Sampei, Louis Fortier, Patrick Raimbault, Kohei Matsuno, Yoshiyuki Abe, Bernard Quéguiner, Augustin Lafond, Marcel Babin, Toru Hirawake doi  openurl
  Title An estimation of the quantitative impacts of copepod grazing on an under sea-ice spring phytoplankton bloom in western Baffin Bay, Canadian Arctic Type Journal
  Year 2021 Publication Elementa: Science of the Anthropocene Abbreviated Journal  
  Volume 9 Issue 1 Pages 00092  
  Keywords  
  Abstract This study aimed to quantify the impact of copepod grazing on the productivity of phytoplankton during an under sea-ice spring phytoplankton bloom (USPB) in western Baffin Bay. To quantify positive and/or negative impacts of copepod grazing on primary production and the interaction between copepod grazing and phytoplankton species, we sampled seawater and zooplankton under the landfast sea ice every 2–3 days between May 24 and July 10, 2016. Samples were analyzed for estimation of primary production, chlorophyll-a (chl-a) concentration, diatom abundance, and copepod fecal pellet (FP) production/grazing rate. Analyses of chl-a concentration, primary production, and FP production/grazing rate revealed clear temporal changes and a mismatch between primary production and copepod consumption. The FP production/grazing rate reached a maximum (9.4/31.2 mg C m–2 d–1) on June 16 before the USPB phase and suddenly decreased to 0.7/2.4 mg C m–2 d–1 on June 21, despite an increase in primary production to 74.0 mg C m–2 d–1. The copepod grazing rate (3.7 mg C m–2 d–1) was low relative to primary production (344.6 mg C m–2 d–1) during the USPB phase (after June 20). While our estimates illustrate that copepod grazing did not limit the maximum daily primary production during the USPB, the low grazing pressure (2% of primary production) may have been an additional contributor to the reduction in total primary productivity at the end of the USPB period due primarily to the low supply of regenerated nitrogen-containing nutrients to drive regenerated production.  
  Programme 1164  
  Campaign  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2325-1026 ISBN Medium  
  Area Expedition Conference  
  Notes Approved yes  
  Call Number Serial 8255  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print