|   | 
Details
   web
Records
Author Sakiko Ishino, Shohei Hattori, Joel Savarino, Bruno Jourdain, Susanne Preunkert, Michel Legrand, Nicolas Caillon, Albane Barbero, Kota Kuribayashi, Naohiro Yoshida
Title Seasonal variations of triple oxygen isotopic compositions of atmospheric sulfate, nitrate, and ozone at Dumont d'Urville, coastal Antarctica Type Journal
Year 2017 Publication Atmospheric Chemistry and Physics Abbreviated Journal
Volume 17 Issue 5 Pages 3713-3727
Keywords
Abstract

Abstract. Triple oxygen isotopic compositions (Δ17O = δ17O0.52 × δ18O) of atmospheric sulfate (SO42−) and nitrate (NO3) in the atmosphere reflect the relative contribution of oxidation pathways involved in their formation processes, which potentially provides information to reveal missing reactions in atmospheric chemistry models. However, there remain many theoretical assumptions for the controlling factors of Δ17O(SO42−) and Δ17O(NO3) values in those model estimations. To test one of those assumption that Δ17O values of ozone (O3) have a flat value and do not influence the seasonality of Δ17O(SO42−) and Δ17O(NO3) values, we performed the first simultaneous measurement of Δ17O values of atmospheric sulfate, nitrate, and ozone collected at Dumont d'Urville (DDU) Station (66°40′S, 140°01′E) throughout 2011. Δ17O values of sulfate and nitrate exhibited seasonal variation characterized by minima in the austral summer and maxima in winter, within the ranges of 0.9–3.4 and 23.0–41.9‰, respectively. In contrast, Δ17O values of ozone showed no significant seasonal variation, with values of 26±1‰ throughout the year. These contrasting seasonal trends suggest that seasonality in Δ17O(SO42−) and Δ17O(NO3) values is not the result of changes in Δ17O(O3), but of the changes in oxidation chemistry. The trends with summer minima and winter maxima for Δ17O(SO42−) and Δ17O(NO3) values are caused by sunlight-driven changes in the relative contribution of O3 oxidation to the oxidation by HOx, ROx, and H2O2. In addition to that general trend, by comparing Δ17O(SO42−) and Δ17O(NO3) values to ozone mixing ratios, we found that Δ17O(SO42−) values observed in spring (September to November) were lower than in fall (March to May), while there was no significant spring and fall difference in Δ17O(NO3) values. The relatively lower sensitivity of Δ17O(SO42−) values to the ozone mixing ratio in spring compared to fall is possibly explained by (i) the increased contribution of SO2 oxidations by OH and H2O2 caused by NOx emission from snowpack and/or (ii) SO2 oxidation by hypohalous acids (HOX = HOCl+HOBr) in the aqueous phase.

Programme 1177
Campaign
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1680-7316 ISBN 1680-7316 Medium
Area Expedition Conference
Notes Approved yes
Call Number Serial 7349
Permanent link to this record
 

 
Author Sprovieri, F., Pirrone, N., Bencardino, M., D'Amore, F., Angot, H., Barbante, C., Brunke, E.G., Arcega-Cabrera, F., Cairns, W., Comero, S., Diéguez, M.D.C., Dommergue, A., Ebinghaus, R., Feng, X.B., Fu, X., Garcia, P.E., Gawlik, B.M., Hageström, U., Hansson, K., Horvat, M., Kotnik, J., Labuschagne, C., Magand, O., Martin, L., Mashyanov, N., Mkololo, T., Munthe, J., Obolkin, V., Islas, M.R., Sena, F., Somerset, V., Spandow, P., Vardè, M., Walters, C., Wängberg, I., Weigelt, A., Yang, X., Zhang, H.
Title Five-year records of Total Mercury Deposition flux at GMOS sites in the Northern and Southern Hemispheres. Type Journal Article
Year 2016 Publication Atmos. chem. phys. Abbreviated Journal
Volume 17 Issue 4 Pages 2689-2708
Keywords
Abstract
Programme 1028
Campaign
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1680-7324 ISBN Medium
Area Expedition Conference
Notes Approved yes
Call Number Serial 6558
Permanent link to this record
 

 
Author F. Sprovieri, N. Pirrone, M. Bencardino, F. D'Amore, H. Angot, C. Barbante, E.-G. Brunke, F. Arcega-Cabrera, W. Cairns, S. Comero, M. D. C. Diéguez, A. Dommergue, R. Ebinghaus, X. B. Feng, X. Fu, P. E. Garcia, B. M. Gawlik, U. Hageström, K. Hansson, M. Horvat, J. Kotnik, C. Labuschagne, O. Magand, L. Martin, N. Mashyanov, T. Mkololo, J. Munthe, V. Obolkin, M. Ramirez Islas, F. Sena, V. Somerset, P. Spandow, M. Vardè, C. Walters, I. Wängberg, A. Weigelt, X. Yang, H. Zhang
Title Five-year records of mercury wet deposition flux at GMOS sites in the Northern and Southern hemispheres Type Journal
Year 2017 Publication Atmos. chem. phys. Abbreviated Journal
Volume 17 Issue 4 Pages 2689-2708
Keywords
Abstract The atmospheric deposition of mercury (Hg) occurs via several mechanisms, including dry and wet scavenging by precipitation events. In an effort to understand the atmospheric cycling and seasonal depositional characteristics of Hg, wet deposition samples were collected for approximately 5 years at 17 selected GMOS monitoring sites located in the Northern and Southern hemispheres in the framework of the Global Mercury Observation System (GMOS) project. Total mercury (THg) exhibited annual and seasonal patterns in Hg wet deposition samples. Interannual differences in total wet deposition are mostly linked with precipitation volume, with the greatest deposition flux occurring in the wettest years. This data set provides a new insight into baseline concentrations of THg concentrations in precipitation worldwide, particularly in regions such as the Southern Hemisphere and tropical areas where wet deposition as well as atmospheric Hg species were not investigated before, opening the way for future and additional simultaneous measurements across the GMOS network as well as new findings in future modeling studies.
Programme 1028
Campaign
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1680-7324 ISBN 1680-7324 Medium
Area Expedition Conference
Notes Approved yes
Call Number Serial 6588
Permanent link to this record
 

 
Author F. De Simone, P. Artaxo, M. Bencardino, S. Cinnirella, F. Carbone, F. D'Amore, A. Dommergue, X. B. Feng, C. N. Gencarelli, I. M. Hedgecock, M. S. Landis, F. Sprovieri, N. Suzuki, I. Wängberg, N. Pirrone
Title Particulate-phase mercury emissions from biomass burning and impact on resulting deposition: a modelling assessment Type Journal
Year 2017 Publication Atmos. chem. phys. Abbreviated Journal
Volume 17 Issue 3 Pages 1881-1899
Keywords
Abstract Mercury (Hg) emissions from biomass burning (BB) are an important source of atmospheric Hg and a major factor driving the interannual variation of Hg concentrations in the troposphere. The greatest fraction of Hg from BB is released in the form of elemental Hg (Hg0(g)). However, little is known about the fraction of Hg bound to particulate matter (HgP) released from BB, and the factors controlling this fraction are also uncertain. In light of the aims of the Minamata Convention to reduce intentional Hg use and emissions from anthropogenic activities, the relative importance of Hg emissions from BB will have an increasing impact on Hg deposition fluxes. Hg speciation is one of the most important factors determining the redistribution of Hg in the atmosphere and the geographical distribution of Hg deposition. Using the latest version of the Global Fire Emissions Database (GFEDv4.1s) and the global Hg chemistry transport model, ECHMERIT, the impact of Hg speciation in BB emissions, and the factors which influence speciation, on Hg deposition have been investigated for the year 2013. The role of other uncertainties related to physical and chemical atmospheric processes involving Hg and the influence of model parametrisations were also investigated, since their interactions with Hg speciation are complex. The comparison with atmospheric HgP concentrations observed at two remote sites, Amsterdam Island (AMD) and Manaus (MAN), in the Amazon showed a significant improvement when considering a fraction of HgP from BB. The set of sensitivity runs also showed how the quantity and geographical distribution of HgP emitted from BB has a limited impact on a global scale, although the inclusion of increasing fractions HgP does limit Hg0(g) availability to the global atmospheric pool. This reduces the fraction of Hg from BB which deposits to the world's oceans from 71 to 62 %. The impact locally is, however, significant on northern boreal and tropical forests, where fires are frequent, uncontrolled and lead to notable Hg inputs to local ecosystems. In the light of ongoing climatic changes this effect could be potentially be exacerbated in the future.
Programme 1028
Campaign
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1680-7324 ISBN 1680-7324 Medium
Area Expedition Conference
Notes Approved yes
Call Number Serial 6590
Permanent link to this record
 

 
Author Michel Legrand, Susanne Preunkert, Eric Wolff, Rolf Weller, Bruno Jourdain, Dietmar Wagenbach
Title Year-round records of bulk and size-segregated aerosol composition in central Antarctica (Concordia site) – Part 1: Fractionation of sea-salt particles Type Journal
Year 2017 Publication Atmospheric Chemistry and Physics Abbreviated Journal
Volume 17 Issue 22 Pages 14039-14054
Keywords
Abstract

Abstract. Multiple year-round records of bulk and size-segregated composition of aerosol were obtained at the inland site of Concordia located at Dome C in East Antarctica. In parallel, sampling of acidic gases on denuder tubes was carried out to quantify the concentrations of HCl and HNO3 present in the gas phase. These time series are used to examine aerosol present over central Antarctica in terms of chloride depletion relative to sodium with respect to freshly emitted sea-salt aerosol as well as depletion of sulfate relative to sodium with respect to the composition of seawater. A depletion of chloride relative to sodium is observed over most of the year, reaching a maximum of ∼ 20ngm−3 in spring when there are still large sea-salt amounts and acidic components start to recover. The role of acidic sulfur aerosol and nitric acid in replacing chloride from sea-salt particles is here discussed. HCl is found to be around twice more abundant than the amount of chloride lost by sea-salt aerosol, suggesting that either HCl is more efficiently transported to Concordia than sea-salt aerosol or re-emission from the snow pack over the Antarctic plateau represents an additional significant HCl source. The size-segregated composition of aerosol collected in winter (from 2006 to 2011) indicates a mean sulfate to sodium ratio of sea-salt aerosol present over central Antarctica of 0.16±0.05, suggesting that, on average, the sea-ice and open-ocean emissions equally contribute to sea-salt aerosol load of the inland Antarctic atmosphere. The temporal variability of the sulfate depletion relative to sodium was examined at the light of air mass backward trajectories, showing an overall decreasing trend of the ratio (i.e., a stronger sulfate depletion relative to sodium) when air masses arriving at Dome C had traveled a longer time over sea ice than over open ocean. The findings are shown to be useful to discuss sea-salt ice records extracted at deep drilling sites located inland Antarctica.

Programme 414
Campaign
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1680-7316 ISBN 1680-7316 Medium
Area Expedition Conference
Notes Approved yes
Call Number Serial 7311
Permanent link to this record
 

 
Author M. Saunois, P. Bousquet, B. Poulter, A. Peregon, P. Ciais, J. G. Canadell, E. J. Dlugokencky, G. Etiope, D. Bastviken, S. Houweling, G. Janssens-Maenhout, F. N. Tubiello, S. Castaldi, R. B. Jackson, M. Alexe, V. K. Arora, D. J. Beerling, P. Bergamaschi, D. R. Blake, G. Brailsford, L. Bruhwiler, C. Crevoisier, P. Crill, K. Covey, C. Frankenberg, N. Gedney, L. Höglund-Isaksson, M. Ishizawa, A. Ito, F. Joos, H.-S. Kim, T. Kleinen, P. Krummel, J.-F. Lamarque, R. Langenfelds, R. Locatelli, T. Machida, S. Maksyutov, J. R. Melton, I. Morino, V. Naik, S. O'Doherty, F.-J. W. Parmentier, P. K. Patra, C. Peng, S. Peng, G. P. Peters, I. Pison, R. Prinn, M. Ramonet, W. J. Riley, M. Saito, M. Santini, R. Schroeder, I. J. Simpson, R. Spahni, A. Takizawa, B. F. Thornton, H. Tian, Y. Tohjima, N. Viovy, A. Voulgarakis, R. Weiss, D. J. Wilton, A. Wiltshire, D. Worthy, D. Wunch, X. Xu, Y. Yoshida, B. Zhang, Z. Zhang, Q. Zhu
Title Variability and quasi-decadal changes in the methane budget over the period 2000–2012 Type Journal
Year 2017 Publication Atmos. Chem. Phys. Abbreviated Journal
Volume 17 Issue 18 Pages 11135-11161
Keywords
Abstract Following the recent Global Carbon Project (GCP) synthesis of the decadal methane (CH4) budget over 2000–2012 (Saunois et al., 2016), we analyse here the same dataset with a focus on quasi-decadal and inter-annual variability in CH4 emissions. The GCP dataset integrates results from top-down studies (exploiting atmospheric observations within an atmospheric inverse-modelling framework) and bottom-up models (including process-based models for estimating land surface emissions and atmospheric chemistry), inventories of anthropogenic emissions, and data-driven approaches. The annual global methane emissions from top-down studies, which by construction match the observed methane growth rate within their uncertainties, all show an increase in total methane emissions over the period 2000–2012, but this increase is not linear over the 13 years. Despite differences between individual studies, the mean emission anomaly of the top-down ensemble shows no significant trend in total methane emissions over the period 2000–2006, during the plateau of atmospheric methane mole fractions, and also over the period 2008–2012, during the renewed atmospheric methane increase. However, the top-down ensemble mean produces an emission shift between 2006 and 2008, leading to 22 [16–32] Tg CH4 yr−1 higher methane emissions over the period 2008–2012 compared to 2002–2006. This emission increase mostly originated from the tropics, with a smaller contribution from mid-latitudes and no significant change from boreal regions. The regional contributions remain uncertain in top-down studies. Tropical South America and South and East Asia seem to contribute the most to the emission increase in the tropics. However, these two regions have only limited atmospheric measurements and remain therefore poorly constrained. The sectorial partitioning of this emission increase between the periods 2002–2006 and 2008–2012 differs from one atmospheric inversion study to another. However, all top-down studies suggest smaller changes in fossil fuel emissions (from oil, gas, and coal industries) compared to the mean of the bottom-up inventories included in this study. This difference is partly driven by a smaller emission change in China from the top-down studies compared to the estimate in the Emission Database for Global Atmospheric Research (EDGARv4.2) inventory, which should be revised to smaller values in a near future. We apply isotopic signatures to the emission changes estimated for individual studies based on five emission sectors and find that for six individual top-down studies (out of eight) the average isotopic signature of the emission changes is not consistent with the observed change in atmospheric 13CH4. However, the partitioning in emission change derived from the ensemble mean is consistent with this isotopic constraint. At the global scale, the top-down ensemble mean suggests that the dominant contribution to the resumed atmospheric CH4 growth after 2006 comes from microbial sources (more from agriculture and waste sectors than from natural wetlands), with an uncertain but smaller contribution from fossil CH4 emissions. In addition, a decrease in biomass burning emissions (in agreement with the biomass burning emission databases) makes the balance of sources consistent with atmospheric 13CH4 observations. In most of the top-down studies included here, OH concentrations are considered constant over the years (seasonal variations but without any inter-annual variability). As a result, the methane loss (in particular through OH oxidation) varies mainly through the change in methane concentrations and not its oxidants. For these reasons, changes in the methane loss could not be properly investigated in this study, although it may play a significant role in the recent atmospheric methane changes as briefly discussed at the end of the paper.
Programme 416
Campaign
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1680-7324 ISBN 1680-7324 Medium
Area Expedition Conference
Notes Approved yes
Call Number Serial 6971
Permanent link to this record
 

 
Author Casado M, Landais A, Masson-Delmotte V, Genthon C, Kerstel E, Kassi S, Arnaud L, Picard G, Prie F, Cattani O, Steen-Larsen H-C, Vignon E, Cermak P,
Title Continuous measurements of isotopic composition of water vapour on the East Antarctic Plateau Type Journal Article
Year 2016 Publication ATMOSPHERIC CHEMISTRY AND PHYSICS Abbreviated Journal
Volume 16 Issue 13 Pages 8521-8538
Keywords
Abstract
Programme 1110
Campaign
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1680-7324 ISBN Medium
Area Expedition Conference
Notes Approved yes
Call Number Serial 6429
Permanent link to this record
 

 
Author Angot, H., Dion, I., Vogel, N., Legrand, M., Magand, O., Dommergue, A.
Title Multi-year record of atmospheric mercury at Dumont d'Urville, East Antarctic coast: continental outflow and oceanic influences Type Journal Article
Year 2016 Publication Atmospheric chemistry and physics Abbreviated Journal 1680-7316
Volume 16 Issue 13 Pages 8265-8279
Keywords
Abstract Under the framework of the Global Mercury Observation System (GMOS) project, a 3.5-year record of atmospheric gaseous elemental mercury (Hg(0)) has been gathered at Dumont d'Urville (DDU, 66°40′ S, 140°01′ E, 43 m above sea level) on the East Antarctic coast. Additionally, surface snow samples were collected in February 2009 during a traverse between Concordia Station located on the East Antarctic plateau and DDU. The record of atmospheric Hg(0) at DDU reveals particularities that are not seen at other coastal sites: a gradual decrease of concentrations over the course of winter, and a daily maximum concentration around midday in summer. Additionally, total mercury concentrations in surface snow samples were particularly elevated near DDU (up to 194.4 ng L−1) as compared to measurements at other coastal Antarctic sites. These differences can be explained by the more frequent arrival of inland air masses at DDU than at other coastal sites. This confirms the influence of processes observed on the Antarctic plateau on the cycle of atmospheric mercury at a continental scale, especially in areas subject to recurrent katabatic winds. DDU is also influenced by oceanic air masses and our data suggest that the ocean plays a dual role on Hg(0) concentrations. The open ocean may represent a source of atmospheric Hg(0) in summer whereas the sea-ice surface may provide reactive halogens in spring that can oxidize Hg(0). This paper also discusses implications for coastal Antarctic ecosystems and for the cycle of atmospheric mercury in high southern latitudes.
Programme 1028
Campaign
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1680-7316 ISBN Medium
Area Expedition Conference
Notes Approved yes
Call Number Serial 6562
Permanent link to this record
 

 
Author H. Angot, I. Dion, N. Vogel, M. Legrand, O. Magand, A. Dommergue
Title Multi-year record of atmospheric mercury at Dumont d'Urville, East Antarctic coast: continental outflow and oceanic influences Type Journal
Year 2016 Publication Atmos. chem. phys. Abbreviated Journal
Volume 16 Issue 13 Pages 8265-8279
Keywords
Abstract Under the framework of the Global Mercury Observation System (GMOS) project, a 3.5-year record of atmospheric gaseous elemental mercury (Hg(0)) has been gathered at Dumont d'Urville (DDU, 66°40′ S, 140°01′ E, 43 m above sea level) on the East Antarctic coast. Additionally, surface snow samples were collected in February 2009 during a traverse between Concordia Station located on the East Antarctic plateau and DDU. The record of atmospheric Hg(0) at DDU reveals particularities that are not seen at other coastal sites: a gradual decrease of concentrations over the course of winter, and a daily maximum concentration around midday in summer. Additionally, total mercury concentrations in surface snow samples were particularly elevated near DDU (up to 194.4 ng L−1) as compared to measurements at other coastal Antarctic sites. These differences can be explained by the more frequent arrival of inland air masses at DDU than at other coastal sites. This confirms the influence of processes observed on the Antarctic plateau on the cycle of atmospheric mercury at a continental scale, especially in areas subject to recurrent katabatic winds. DDU is also influenced by oceanic air masses and our data suggest that the ocean plays a dual role on Hg(0) concentrations. The open ocean may represent a source of atmospheric Hg(0) in summer whereas the sea-ice surface may provide reactive halogens in spring that can oxidize Hg(0). This paper also discusses implications for coastal Antarctic ecosystems and for the cycle of atmospheric mercury in high southern latitudes.
Programme 1028
Campaign
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1680-7324 ISBN 1680-7324 Medium
Area Expedition Conference
Notes Approved yes
Call Number Serial 6594
Permanent link to this record
 

 
Author Angot, H., Magand, O., Helmig, D., Ricaud, P., Quennehen, B., Gallée, H., Del Guasta, M., Sprovieri, F., Pirrone, N., Savarino, J., and Dommergue, A.
Title New insights into the atmospheric mercury cycling in central Antarctica and implications on a continental scale Type Journal Article
Year 2016 Publication ATMOSPHERIC CHEMISTRY AND PHYSICS Abbreviated Journal
Volume 16 Issue 13 Pages 8249-8264
Keywords
Abstract Under the framework of the GMOS project (Global Mercury Observation System) atmospheric mercury monitoring has been implemented at Concordia Station on the high-altitude Antarctic plateau (75°06′ S, 123°20′ E, 3220 m above sea level). We report here the first year-round measurements of gaseous elemental mercury (Hg(0)) in the atmosphere and in snowpack interstitial air on the East Antarctic ice sheet. This unique data set shows evidence of an intense oxidation of atmospheric Hg(0) in summer (24-hour daylight) due to the high oxidative capacity of the Antarctic plateau atmosphere in this period of the year. Summertime Hg(0) concentrations exhibited a pronounced daily cycle in ambient air with maximal concentrations around midday. Photochemical reactions and chemical exchange at the air–snow interface were prominent, highlighting the role of the snowpack on the atmospheric mercury cycle. Our observations reveal a 20 to 30 % decrease of atmospheric Hg(0) concentrations from May to mid-August (winter, 24 h darkness). This phenomenon has not been reported elsewhere and possibly results from the dry deposition of Hg(0) onto the snowpack. We also reveal the occurrence of multi-day to weeklong atmospheric Hg(0) depletion events in summer, not associated with depletions of ozone, and likely due to a stagnation of air masses above the plateau triggering an accumulation of oxidants within the shallow boundary layer. Our observations suggest that the inland atmospheric reservoir is depleted in Hg(0) in summer. Due to katabatic winds flowing out from the Antarctic plateau down the steep vertical drops along the coast and according to observations at coastal Antarctic stations, the striking reactivity observed on the plateau most likely influences the cycle of atmospheric mercury on a continental scale.
Programme 910
Campaign
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1680-7316 ISBN Medium
Area Expedition Conference
Notes Approved yes
Call Number Serial 6446
Permanent link to this record