Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Pierre-Yves Pascal, Yann Reynaud, Elie Poulin, Chantal De Ridder, Thomas Saucede doi  openurl
  Title (down) Feeding in spatangoids: the case of Abatus Cordatus in the Kerguelen Islands (Southern Ocean) Type Journal
  Year 2021 Publication Polar Biology Abbreviated Journal  
  Volume 44 Issue 4 Pages 795-808  
  Keywords  
  Abstract Irregular urchins exclusively live in marine soft bottom habitats, dwelling either upon or inside sediments and selectively picking up sediment grains and organic particles, or swallowing bulk sediment to feed on the associated organic matter. The exact food source and dietary requirements of most irregular echinoids, however, remain incompletely understood. The schizasterid species Abatus cordatus (Verrill, 1876) is a sub-Antarctic spatangoid that is endemic to the Kerguelen. The feeding behaviour of A. cordatus was investigated using simultaneously metabarcoding and stable isotope approaches. Comparison of ingested and surrounding sediments by metabarcoding revealed a limited selective ingestion of prokaryotes and eukaryotes by the urchin. Compared to surrounding sediments, the gut content had (i) higher carbon and nitrogen concentrations potentially due to selective ingestion of organic matter and/or the sea urchin mucus secretion and (ii) δ15N enrichment due to the selective assimilation of lighter isotope in the gut. Feeding experiments were performed using 13C and 15 N-enriched sediments in aquariums. The progression of stable isotope enrichment in proximal and distal parts of the digestive track of A. cordatus revealed that all particles are not similarly transported likely due to siphon functioning. Ingestion of water with associated dissolved and particulate organic matter should play an important role in urchin nutrition. A. cordatus had a gut resident time fluctuating between 76 and 101 h and an ingestion rate of 36 mg dry sediment h−1 suggesting that dense populations of the species may play a key ecological role through bioturbation in soft bottom shallow-water habitats of the Kerguelen Islands.  
  Programme 1044  
  Campaign  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1432-2056 ISBN Medium  
  Area Expedition Conference  
  Notes Approved yes  
  Call Number Serial 8000  
Permanent link to this record
 

 
Author Stefan Osterwalder, Sarrah M. Dunham-Cheatham, Beatriz Ferreira Araujo, Olivier Magand, Jennie L. Thomas, Foteini Baladima, Katrine Aspmo Pfaffhuber, Torunn Berg, Lei Zhang, Jiaoyan Huang, Aurélien Dommergue, Jeroen E. Sonke, Mae Sexauer Gustin doi  openurl
  Title (down) Fate of Springtime Atmospheric Reactive Mercury: Concentrations and Deposition at Zeppelin, Svalbard Type Journal
  Year 2021 Publication ACS Earth and Space Chemistry Abbreviated Journal  
  Volume 5 Issue 11 Pages 3234-3246  
  Keywords  
  Abstract Mid-latitude atmospheric elemental mercury (Hg) emissions undergo extensive oxidation to reactive Hg (RM) compounds during Arctic polar sunrise, resulting in enhanced atmospheric deposition that impacts Arctic marine wildlife and humans. It has been difficult to estimate RM dry deposition, because RM concentrations, compounds, and their deposition velocities are ill-defined. Here, we investigate RM concentrations sampled with membrane-based methods and find these to exceed denuder-based RM detection by 5 times at the Zeppelin Observatory on Svalbard (March 26–July 24, 2019). Measured dry deposition of gaseous oxidized Hg was about half of the modeled RM deposition, demonstrating that particulate-bound Hg was an important component of dry deposition. Using thermal membrane desorption, RM chemistry was found to be dominated by Hg–Cl/Br (51%) and Hg–N (45%) compounds. Back-trajectory analysis indicated that Hg–Br/Cl compounds were predominantly advected from within the marine boundary layer (sea ice exposure), while Hg–N originated from the free troposphere. Weekly average RM compound-specific dry deposition velocities ranged from 0.12 to 0.49 cm s–1, with a net RM dry deposition of 1.9 μg m–2 (1.5–2.5 μg m–2; 95% confidence interval) that exceeds the mean annual Hg wet deposition flux in Svalbard. Overall, we find that springtime atmospheric RM deposition has been underestimated in the Arctic marine environment.  
  Programme 1028  
  Campaign  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved yes  
  Call Number Serial 8361  
Permanent link to this record
 

 
Author Niels M. Schmidt, Olivier Gilg, Jon Aars, Rolf A. Ims doi  isbn
openurl 
  Title (down) Fat, Furry, Flexible, and Functionally Important: Characteristics of Mammals Living in the Arctic Type Book
  Year 2021 Publication Arctic Ecology Abbreviated Journal  
  Volume Issue Pages 357-384  
  Keywords arctic ecosystems Arctic mammals climate change deglaciation food webs homeotherms low mammal species diversity primary production  
  Abstract Mammals constitute a group of vertebrates that share a number of unique characteristics,such as nursing their young with milk, and having hair. The pattern of low mammal species diversity in the Arctic probably reflects a combination of mainly two driving factors: first, being homeotherms, mammals require a substantial amount of energy to sustain the various life processes, and the arctic regions are characterized by a very low availability of energy due to short seasons for primary production. Secondly, the occurrence of arctic mammals today reflects the reinvasion of the mammal species into the Arctic as the ecosystems were re-established following the deglaciation. This chapter discusses the characteristics of the arctic mammals, including their unique adaptations to life, and their role as both consumer and food base in the arctic ecosystems. Climate change in the Arctic may also alter the interactions within food webs.  
  Programme 1036  
  Campaign  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN 978-1-118-84658-2 Medium  
  Area Expedition Conference  
  Notes Approved yes  
  Call Number Serial 8489  
Permanent link to this record
 

 
Author Karine Delord, Cédric Cotté, Pascal Terray, Charles-André Bost, Henri Weimerskirch, Christophe Barbraud file  doi
openurl 
  Title (down) Factors affecting adult body condition in the endangered northern rockhopper penguin Type Journal
  Year 2021 Publication Marine Biology Abbreviated Journal  
  Volume 168 Issue 3 Pages 27  
  Keywords  
  Abstract Understanding the factors that drive the dynamics of populations of long‐lived species presents a unique challenge for conservation management. Here, we investigated long-term change in the body condition of adult northern rockhopper penguins Eudyptes moseleyi at Amsterdam Island, southern Indian Ocean, which hosts 5–10% of the global population of this endangered species. Analysis of a long‐term dataset (1994–2016), concurrent to the population's rapid decline, revealed no trend in adult northern rockhopper penguin body condition over time at the stages considered in this study, i.e. breeding and moulting. However, body condition varied between years and sexes and part of this variation was explained by environmental factors. Males were on average in better condition than females whatever the stage and individuals on average were in better condition during the moulting compared to the breeding period. The environmental conditions [sea surface temperature anomaly (SSTa), Subtropical Indian Ocean Dipole (SIOD) and Southern Annular Mode (SAM)] appeared to impact non-linearly the body condition. Overall, females were in better condition for negative values of SAM, SIOD and SSTa. The body condition of males exhibited similar but less complex and more significant patterns, with decreasing body condition for increasing SAM, SIOD and SSTa. The absence of long-term trends in male and female body condition suggests that the very low reproductive output and declining population since 1997 is probably not the result of environmental conditions during pre-breeding and pre-moult and necessitates further research into possible drivers during the breeding season.  
  Programme 109,394  
  Campaign  
  Address  
  Corporate Author Thesis Bachelor's thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1432-1793 ISBN Medium  
  Area Expedition Conference  
  Notes Approved yes  
  Call Number Serial 7792  
Permanent link to this record
 

 
Author Guillaume Schwob, Nicolás I. Segovia, Claudio González-Wevar, Léa Cabrol, Julieta Orlando, Elie Poulin doi  isbn
openurl 
  Title (down) Exploring the Microdiversity Within Marine Bacterial Taxa: Toward an Integrated Biogeography in the Southern Ocean Type Journal
  Year 2021 Publication Frontiers in Microbiology Abbreviated Journal  
  Volume 12 Issue Pages 1985  
  Keywords  
  Abstract Most of the microbial biogeographic patterns in the oceans have been depicted at the whole community level, leaving out finer taxonomic resolution (i.e., microdiversity) that is crucial to conduct intra-population phylogeographic study, as commonly done for macroorganisms. Here, we present a new approach to unravel the bacterial phylogeographic patterns combining community-wide survey by 16S rRNA gene metabarcoding and intra-species resolution through the oligotyping method, allowing robust estimations of genetic and phylogeographic indices, and migration parameters. As a proof-of-concept, we focused on the bacterial genus Spirochaeta across three distant biogeographic provinces of the Southern Ocean; maritime Antarctica, sub-Antarctic Islands, and Patagonia. Each targeted Spirochaeta operational taxonomic units were characterized by a substantial intrapopulation microdiversity, and significant genetic differentiation and phylogeographic structure among the three provinces. Gene flow estimations among Spirochaeta populations support the role of the Antarctic Polar Front as a biogeographic barrier to bacterial dispersal between Antarctic and sub-Antarctic provinces. Conversely, the Antarctic Circumpolar Current appears as the main driver of gene flow, connecting sub-Antarctic Islands with Patagonia and maritime Antarctica. Additionally, historical processes (drift and dispersal limitation) govern up to 86% of the spatial turnover among Spirochaeta populations. Overall, our approach bridges the gap between microbial and macrobial ecology by revealing strong congruency with macroorganisms distribution patterns at the populational level, shaped by the same oceanographic structures and ecological processes.  
  Programme 1044  
  Campaign  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1664-302X ISBN 1664-302X Medium  
  Area Expedition Conference  
  Notes Approved yes  
  Call Number Serial 6457  
Permanent link to this record
 

 
Author Michaël Beaulieu, Michael Dähne, Jane Köpp, Coline Marciau, Akiko Kato, Yan Ropert-Coudert, Thierry Raclot doi  openurl
  Title (down) Exploring the interplay between nest vocalizations and foraging behaviour in breeding birds Type Journal
  Year 2021 Publication Animal Behaviour Abbreviated Journal  
  Volume 180 Issue Pages 375-391  
  Keywords bird communication foraging behaviour reproductive partner vocalization  
  Abstract In many bird species, reproductive partners sing together each time they meet on the nest. Because these nest ceremonies typically correspond to the return of one partner from foraging and to the subsequent departure of the other partner, we hypothesized that the foraging decisions of departing birds may be facilitated by the vocalizations accompanying their partner's return on the nest, providing these vocalizations reflect foraging conditions. We examined this hypothesis in pairs of Adélie penguins, Pygoscelis adeliae, by longitudinally monitoring their nest vocalizations and their spatial distribution when foraging at sea across the guard stage, when both parents regularly alternate foraging at sea and chick attendance at the nest. We found that the acoustic characteristics of the vocalizations produced during nest relief ceremonies reflected some characteristics of the foraging trips of both the returning and departing partners. However, these acoustic characteristics differed between partners and were differently related to their foraging behaviour. Accordingly, departing individuals did not adopt the same foraging behaviour as that of returning individuals. Nest vocalizations therefore do not appear to represent cues facilitating the foraging decisions of departing birds, but they may rather reflect the arousal of partners, which differently correlates with the foraging behaviour of the returning and departing individuals. Our study highlights an interplay between the vocalizations produced on the nest by reproductive partners and their foraging behaviour, thereby broadening the scope of animal vocalizations and opening a novel perspective on the regulation of foraging strategies. However, our exploratory study also highlights the complexity of examining this interplay, as the effects of nest vocalizations on foraging decisions may be complicated by other factors (e.g. intrinsic foraging capacity). This calls for the use of additional and experimental approaches (e.g. vocalization playbacks) to clarify the role of nest vocalizations as potential mediators of foraging decisions.  
  Programme 1091  
  Campaign  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0003-3472 ISBN Medium  
  Area Expedition Conference  
  Notes Approved yes  
  Call Number Serial 8760  
Permanent link to this record
 

 
Author Samara Danel, Jules Chiffard-Carricaburu, Francesco Bonadonna, Anna P. Nesterova doi  openurl
  Title (down) Exclusion in the field: wild brown skuas find hidden food in the absence of visual information Type Journal
  Year 2021 Publication Animal Cognition Abbreviated Journal  
  Volume 24 Issue 4 Pages 867-876  
  Keywords  
  Abstract Inferential reasoning by exclusion allows responding adaptively to various environmental stimuli when confronted with inconsistent or partial information. In the experimental context, this mechanism involves selecting correctly between an empty option and a potentially rewarded one. Recently, the increasing reports of this capacity in phylogenetically distant species have led to the assumption that reasoning by exclusion is the result of convergent evolution. Within one largely unstudied avian order, i.e. the Charadriiformes, brown skuas (Catharacta antarctica ssp lonnbergi) are highly flexible and opportunistic predators. Behavioural flexibility, along with specific aspects of skuas’ feeding ecology, may act as influencing factors in their ability to show exclusion performance. Our study aims to test whether skuas are able to choose by exclusion in a visual two-way object-choice task. Twenty-six wild birds were presented with two opaque cups, one covering a food reward. Three conditions were used: ‘full information’ (showing the content of both cups), ‘exclusion’ (showing the content of the empty cup), and ‘control’ (not showing any content). Skuas preferentially selected the rewarded cup in the full information and exclusion condition. The use of olfactory cues was excluded by results in the control condition. Our study opens new field investigations for testing further the cognition of this predatory seabird.  
  Programme 354  
  Campaign  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1435-9456 ISBN Medium  
  Area Expedition Conference  
  Notes Approved yes  
  Call Number Serial 7947  
Permanent link to this record
 

 
Author Zachary J. Oppler, Kayleigh R. O’Keeffe, Karen D. McCoy, Dustin Brisson doi  openurl
  Title (down) Evolutionary Genetics of Borrelia Type Journal
  Year 2021 Publication Current issues in molecular biology Abbreviated Journal  
  Volume 42 Issue Pages 97-112  
  Keywords  
  Abstract The genus Borrelia consists of evolutionarily and genetically diverse bacterial species that cause a variety of diseases in humans and domestic animals. These vector-borne spirochetes can be classified into two major evolutionary groups, the Lyme borreliosis clade and the relapsing fever clade, both of which have complex transmission cycles during which they interact with multiple host species and arthropod vectors. Molecular, ecological, and evolutionary studies have each provided significant contributions towards our understanding of the natural history, biology and evolutionary genetics of Borrelia species; however, integration of these studies is required to identify the evolutionary causes and consequences of the genetic variation within and among Borrelia species. For example, molecular and genetic studies have identified the adaptations that maximize fitness components throughout the Borrelia lifecycle and enhance transmission efficacy but provide limited insights into the evolutionary pressures that have produced them. Ecological studies can identify interactions between Borrelia species and the vertebrate hosts and arthropod vectors they encounter and the resulting impact on the geographic distribution and abundance of spirochetes but not the genetic or molecular basis underlying these interactions. In this review we discuss recent findings on the evolutionary genetics from both of the evolutionarily distinct clades of Borrelia species. We focus on connecting molecular interactions to the ecological processes that have driven the evolution and diversification of Borrelia species in order to understand the current distribution of genetic and molecular variation within and between Borrelia species.  
  Programme 333  
  Campaign  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1467-3037 ISBN Medium  
  Area Expedition Conference  
  Notes Approved yes  
  Call Number Serial 8521  
Permanent link to this record
 

 
Author Deborah Verfaillie, Joanna Charton, Irene Schimmelpfennig, Zoe Stroebele, Vincent Jomelli, François Bétard, Vincent Favier, Julien Cavero, Etienne Berthier, Hugues Goosse, Vincent Rinterknecht, Claude Legentil, Raphaelle Charrassin, Georges Aumaître, Didier L. Bourlès, Karim Keddadouche doi  openurl
  Title (down) Evolution of the Cook Ice Cap (Kerguelen Islands) between the last centuries and 2100 ce based on cosmogenic dating and glacio-climatic modelling Type Journal
  Year 2021 Publication Antarctic Science Abbreviated Journal  
  Volume 33 Issue 3 Pages 301-317  
  Keywords degree-day glaciological model future projections glacial fluctuations in situ cosmogenic chlorine-36 dating moraines sub-Antarctic islands  
  Abstract The Cook Ice Cap (CIC) on the sub-Antarctic Kerguelen Islands recently experienced extremely negative surface mass balance. Further deglaciation could have important impacts on endemic and invasive fauna and flora. To put this exceptional glacier evolution into a multi-centennial-scale context, we refined the evolution of the CIC over the last millennium, investigated the associated climate conditions and explored its potential evolution by 2100 ce. A glaciological model, constrained by cosmic ray exposure dating of moraines, historical documents and recent direct mass balance observations, was used to simulate the ice-cap extents during different phases of advance and retreat between the last millennium and 2100 ce. Cosmogenic dating suggests glacial advance around the early Little Ice Age (LIA), consistent with findings from other sub-Antarctic studies, and the rather cold and humid conditions brought about by the negative phase of the Southern Annular Mode (SAM). This study contributes to our currently limited understanding of palaeoclimate for the early LIA in the southern Indian Ocean. Glaciological modelling and observations confirm the recent decrease in CIC extent linked to the intensification of the SAM. Although affected by large uncertainties, future simulations suggest a complete disappearance of CIC by the end of the century.  
  Programme 1048  
  Campaign  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0954-1020, 1365-2079 ISBN Medium  
  Area Expedition Conference  
  Notes Approved yes  
  Call Number Serial 8187  
Permanent link to this record
 

 
Author Lisa-Marie Mazzolo openurl 
  Title (down) Evolution de la calotte glaciaire du Svalbard par altimétrie laser Type Master 2
  Year 2021 Publication Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract  
  Programme 337  
  Campaign  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved yes  
  Call Number Serial 8357  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print