Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Dj Léandri-Breton, A Tarroux, K Elliott, P Legagneux, F Angelier, P Blévin, Vs Bråthen, P Fauchald, A Goutte, W Jouanneau, S Tartu, B Moe, O Chastel doi  isbn
openurl 
  Title (up) Long-term tracking of an Arctic-breeding seabird indicates high fidelity for pelagic wintering areas Type Journal
  Year 2021 Publication Marine Ecology Progress Series Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract Site fidelity is driven by predictable resource distributions in time and space. However, intrinsic factors related to an individual’s physiology and life-history traits can contribute to consistent foraging behaviour and movement patterns. Using 11 years of continuous geolocation tracking data (fall 2008 to spring 2019), we investigated spatiotemporal consistency in non-breeding movements in a pelagic seabird population of black-legged kittiwakes (Rissa tridactyla) breeding in the High Arctic (Svalbard). Our objective was to assess the relative importance of spatial versus temporal repeatability behind inter-annual movement consistency during winter. Most kittiwakes used pelagic regions of the western North Atlantic. Winter site fidelity was high both within and across individuals and at meso (100-1000 km) and macro scales (>1000 km). Spatial consistency in non-breeding movement was higher within than among individuals, suggesting that site fidelity might emerge from individuals’ memory to return to locations with predictable resource availability. Consistency was also stronger in space than in time, suggesting that it was driven by consistent resource pulses that may vary in time more so than in space. Nonetheless, some individuals displayed more flexibility by adopting a strategy of itinerancy during winter, and the causes of this flexibility are unclear. Specialization for key wintering areas can indicate vulnerability to environmental perturbations, with winter survival and carry-over effects arising from winter conditions as potential drivers of population dynamics  
  Programme 330  
  Campaign  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN 0171-8630, 1616-1599 Medium  
  Area Expedition Conference  
  Notes Approved yes  
  Call Number Serial 7988  
Permanent link to this record
 

 
Author Don-Jean Léandri-Breton, Arnaud Tarroux, Kyle H. Elliott, Pierre Legagneux, Frédéric Angelier, Pierre Blévin, Vegard Sandøy Bråthen, Per Fauchald, Aurélie Goutte, William Jouanneau, Sabrina Tartu, Børge Moe, Olivier Chastel doi  openurl
  Title (up) Long-term tracking of an Arctic-breeding seabird indicates high fidelity to pelagic wintering areas Type Journal
  Year 2021 Publication Marine Ecology Progress Series Abbreviated Journal  
  Volume 676 Issue Pages 205-218  
  Keywords Biologging Global Location Sensors GLS Individual consistency Migration Nearest neighbor distance Repeatability Spatial distribution  
  Abstract Site fidelity is driven by predictable resource distributions in time and space. However, intrinsic factors related to an individual’s physiology and life-history traits can contribute to consistent foraging behaviour and movement patterns. Using 11 yr of continuous geolocation tracking data (fall 2008 to spring 2019), we investigated spatiotemporal consistency in non-breeding movements in a pelagic seabird population of black-legged kittiwakes Rissa tridactyla breeding in the High Arctic (Svalbard). Our objective was to assess the relative importance of spatial versus temporal repeatability behind inter-annual movement consistency during winter. Most kittiwakes used pelagic regions of the western North Atlantic. Winter site fidelity was high both within and across individuals and at meso (100-1000 km) and macro scales (>1000 km). Spatial consistency in non-breeding movement was higher within than among individuals, suggesting that site fidelity might emerge from individuals’ memory to return to locations with predictable resource availability. Consistency was also stronger in space than in time, suggesting that it was driven by consistent resource pulses that may vary in time more so than in space. Nonetheless, some individuals displayed more flexibility by adopting a strategy of itinerancy during winter, and the causes of this flexibility are unclear. Specialization for key wintering areas can indicate vulnerability to environmental perturbations, with winter survival and carry-over effects arising from winter conditions as potential drivers of population dynamics.  
  Programme 330  
  Campaign  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0171-8630, 1616-1599 ISBN Medium  
  Area Expedition Conference  
  Notes Approved yes  
  Call Number Serial 8607  
Permanent link to this record
 

 
Author Minna Palmroth, Maxime Grandin, Theodoros Sarris, Eelco Doornbos, Stelios Tourgaidis, Anita Aikio, Stephan Buchert, Mark A. Clilverd, Iannis Dandouras, Roderick Heelis, Alex Hoffmann, Nickolay Ivchenko, Guram Kervalishvili, David J. Knudsen, Anna Kotova, Han-Li Liu, David M. Malaspina, Günther March, Aurélie Marchaudon, Octav Marghitu, Tomoko Matsuo, Wojciech J. Miloch, Therese Moretto-Jørgensen, Dimitris Mpaloukidis, Nils Olsen, Konstantinos Papadakis, Robert Pfaff, Panagiotis Pirnaris, Christian Siemes, Claudia Stolle, Jonas Suni, Jose van den IJssel, Pekka T. Verronen, Pieter Visser, Masatoshi Yamauchi doi  openurl
  Title (up) Lower-thermosphere–ionosphere (LTI) quantities: current status of measuring techniques and models Type Journal
  Year 2021 Publication Annales Geophysicae Abbreviated Journal  
  Volume 39 Issue 1 Pages 189-237  
  Keywords  
  Abstract

Abstract. The lower-thermosphere–ionosphere (LTI) system consists of the upper atmosphere and the lower part of the ionosphere and as such comprises a complex system coupled to both the atmosphere below and space above. The atmospheric part of the LTI is dominated by laws of continuum fluid dynamics and chemistry, while the ionosphere is a plasma system controlled by electromagnetic forces driven by the magnetosphere, the solar wind, as well as the wind dynamo. The LTI is hence a domain controlled by many different physical processes. However, systematic in situ measurements within this region are severely lacking, although the LTI is located only 80 to 200 km above the surface of our planet. This paper reviews the current state of the art in measuring the LTI, either in situ or by several different remote-sensing methods. We begin by outlining the open questions within the LTI requiring high-quality in situ measurements, before reviewing directly observable parameters and their most important derivatives. The motivation for this review has arisen from the recent retention of the Daedalus mission as one among three competing mission candidates within the European Space Agency (ESA) Earth Explorer 10 Programme. However, this paper intends to cover the LTI parameters such that it can be used as a background scientific reference for any mission targeting in situ observations of the LTI.

 
  Programme 312  
  Campaign  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0992-7689 ISBN Medium  
  Area Expedition Conference  
  Notes Approved yes  
  Call Number Serial 7951  
Permanent link to this record
 

 
Author M. Afroosa, B. Rohith, Arya Paul, Fabien Durand, Romain Bourdallé-Badie, P. V. Sreedevi, Olivier de Viron, Valérie Ballu, S. S. C. Shenoi doi  openurl
  Title (up) Madden-Julian oscillation winds excite an intraseasonal see-saw of ocean mass that affects Earth’s polar motion Type Journal
  Year 2021 Publication Communications Earth & Environment Abbreviated Journal  
  Volume 2 Issue 1 Pages 1-8  
  Keywords Physical oceanography  
  Abstract Strong large-scale winds can relay their energy to the ocean bottom and elicit an almost immediate intraseasonal barotropic (depth independent) response in the ocean. The intense winds associated with the Madden-Julian Oscillation over the Maritime Continent generate significant intraseasonal basin-wide barotropic sea level variability in the tropical Indian Ocean. Here we show, using a numerical model and a network of in-situ bottom pressure recorders, that the concerted barotropic response of the Indian and the Pacific Ocean to these winds leads to an intraseasonal see-saw of oceanic mass in the Indo-Pacific basin. This global-scale mass shift is unexpectedly fast, as we show that the mass field of the entire Indo-Pacific basin is dynamically adjusted to Madden-Julian Oscillation in a few days. We find this large-scale ocean see-saw, induced by the Madden-Julian Oscillation, has a detectable influence on the Earth’s polar axis motion, in particular during the strong see-saw of early 2013.  
  Programme 688  
  Campaign  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2662-4435 ISBN Medium  
  Area Expedition Conference  
  Notes Approved yes  
  Call Number Serial 8387  
Permanent link to this record
 

 
Author Jan Grimsrud Davidsen, Xavier Bordeleau, Sindre Håvarstein Eldøy, Frederick Whoriskey, Michael Power, Glenn T. Crossin, Colin Buhariwalla, Philippe Gaudin doi  isbn
openurl 
  Title (up) Marine habitat use and feeding ecology of introduced anadromous brown trout at the colonization front of the sub-Antarctic Kerguelen archipelago Type Journal
  Year 2021 Publication Scientific Reports Abbreviated Journal  
  Volume 11 Issue 1 Pages 11917  
  Keywords Animal migration Behavioural ecology Ecology Stable isotope analysis  
  Abstract In 1954, brown trout were introduced to the Kerguelen archipelago (49°S, 70°E), a pristine, sub-Antarctic environment previously devoid of native freshwater fishes. Trout began spreading rapidly via coastal waters to colonize adjacent watersheds, however, recent and unexpectedly the spread has slowed. To better understand the ecology of the brown trout here, and why their expansion has slowed, we documented the marine habitat use, foraging ecology, and environmental conditions experienced over one year by 50 acoustically tagged individuals at the colonization front. Trout mainly utilized the marine habitat proximate to their tagging site, ranging no further than 7 km and not entering any uncolonized watersheds. Nutritional indicators showed that trout were in good condition at the time of tagging. Stomach contents and isotope signatures in muscle of additional trout revealed a diet of amphipods (68%), fish (23%), isopods (6%), and zooplankton (6%). The small migration distances observed, presence of suitable habitat, and rich local foraging opportunities suggest that trout can achieve their resource needs close to their home rivers. This may explain why the expansion of brown trout at Kerguelen has slowed.  
  Programme 1041  
  Campaign  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2045-2322 ISBN 2045-2322 Medium  
  Area Expedition Conference  
  Notes Approved yes  
  Call Number Serial 8180  
Permanent link to this record
 

 
Author Emilia Trudnowska, Léo Lacour, Mathieu Ardyna, Andreas Rogge, Jean Olivier Irisson, Anya M. Waite, Marcel Babin, Lars Stemmann doi  openurl
  Title (up) Marine snow morphology illuminates the evolution of phytoplankton blooms and determines their subsequent vertical export Type Journal
  Year 2021 Publication Nature Communications Abbreviated Journal  
  Volume 12 Issue 1 Pages 2816  
  Keywords Carbon cycle Marine biology  
  Abstract The organic carbon produced in the ocean’s surface by phytoplankton is either passed through the food web or exported to the ocean interior as marine snow. The rate and efficiency of such vertical export strongly depend on the size, structure and shape of individual particles, but apart from size, other morphological properties are still not quantitatively monitored. With the growing number of in situ imaging technologies, there is now a great possibility to analyze the morphology of individual marine snow. Thus, automated methods for their classification are urgently needed. Consequently, here we present a simple, objective categorization method of marine snow into a few ecologically meaningful functional morphotypes using field data from successive phases of the Arctic phytoplankton bloom. The proposed approach is a promising tool for future studies aiming to integrate the diversity, composition and morphology of marine snow into our understanding of the biological carbon pump.  
  Programme 1164  
  Campaign  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2041-1723 ISBN Medium  
  Area Expedition Conference  
  Notes Approved yes  
  Call Number Serial 8250  
Permanent link to this record
 

 
Author Jouanneau W.; Léandri-breton D-j.; Herzke D.; Moe B.; Nikiforov V. A.; Pallud M.; Parenteau C.; Gabrielsen G. W.; Chastel O. openurl 
  Title (up) Maternal transfer of contaminants and endocrine disruption in an Arctic seabird Type Peer-reviewed symposium
  Year 2021 Publication 5th animal ecophysiology seminar “cepa5” 2021 – november 2-4 – montpellier, france Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract  
  Programme 330  
  Campaign  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved yes  
  Call Number Serial 8655  
Permanent link to this record
 

 
Author Elena Barbaro, Krystyna Koziol, Mats P. Björkman, Carmen P. Vega, Christian Zdanowicz, Tonu Martma, Jean-Charles Gallet, Daniel Kępski, Catherine Larose, Bartłomiej Luks, Florian Tolle, Thomas V. Schuler, Aleksander Uszczyk, Andrea Spolaor doi  isbn
openurl 
  Title (up) Measurement report: Spatial variations in ionic chemistry and water-stable isotopes in the snowpack on glaciers across Svalbard during the 2015–2016 snow accumulation season Type Journal
  Year 2021 Publication Atmospheric Chemistry and Physics Abbreviated Journal  
  Volume 21 Issue 4 Pages 3163-3180  
  Keywords  
  Abstract The Svalbard archipelago, located at the Arctic sea-ice edge between 74 and 81∘ N, is ∼60 % covered by glaciers. The region experiences rapid variations in atmospheric flow during the snow season (from late September to May) and can be affected by air advected from both lower and higher latitudes, which likely impact the chemical composition of snowfall. While long-term changes in Svalbard snow chemistry have been documented in ice cores drilled from two high-elevation glaciers, the spatial variability of the snowpack composition across Svalbard is comparatively poorly understood. Here, we report the results of the most comprehensive seasonal snow chemistry survey to date, carried out in April 2016 across 22 sites on seven glaciers across the archipelago. At each glacier, three snowpits were sampled along the altitudinal profiles and the collected samples were analysed for major ions (Ca2+, K+, Na+, Mg2+, NH4+, SO42-, Br−, Cl−, and NO3-) and stable water isotopes (δ18O, δ2H). The main aims were to investigate the natural and anthropogenic processes influencing the snowpack and to better understand the influence of atmospheric aerosol transport and deposition patterns on the snow chemical composition. The snow deposited in the southern region of Svalbard is characterized by the highest total ionic loads, mainly attributed to sea-salt particles. Both NO3- and NH4+ in the seasonal snowpack reflect secondary aerosol formation and post-depositional changes, resulting in very different spatial deposition patterns: NO3- has its highest loading in north-western Spitsbergen and NH4+ in the south-west. The Br− enrichment in snow is highest in north-eastern glacier sites closest to areas of extensive sea-ice coverage. Spatial correlation patterns between Na+ and δ18O suggest that the influence of long-range transport of aerosols on snow chemistry is proportionally greater above 600–700 m a.s.l.  
  Programme 1192  
  Campaign  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1680-7316 ISBN 1680-7316 Medium  
  Area Expedition Conference  
  Notes Approved yes  
  Call Number Serial 8608  
Permanent link to this record
 

 
Author Manon Clairbaux, William W. L. Cheung, Paul Mathewson, Warren Porter, Nicolas Courbin, Jérôme Fort, Hallvard Strøm, Børge Moe, Per Fauchald, Sebastien Descamps, Hálfdán Helgason, Vegard S. Bråthen, Benjamin Merkel, Tycho Anker-Nilssen, Ingar S. Bringsvor, Olivier Chastel, Signe Christensen-Dalsgaard, Jóhannis Danielsen, Francis Daunt, Nina Dehnhard, Kjell-Einar Erikstad, Alexeï Ezhov, Maria Gavrilo, Yuri Krasnov, Magdalene Langset, Svein-Håkon Lorentsen, Mark Newell, Bergur Olsen, Tone Kirstin Reiertsen, Geir Systad, Þorkell L. Þórarinsson, Mark Baran, Tony Diamond, Annette L. Fayet, Michelle G. Fitzsimmons, Morten Frederiksen, Grant H. Gilchrist, Tim Guilford, Nicholas P. Huffeldt, Mark Jessopp, Kasper L. Johansen, Amy L. Kouwenberg, Jannie F. Linnebjerg, Laura McFarlane Tranquilla, Mark Mallory, Flemming R. Merkel, William Montevecchi, Anders Mosbech, Aevar Petersen, David Grémillet file  doi
openurl 
  Title (up) Meeting Paris agreement objectives will temper seabird winter distribution shifts in the North Atlantic Ocean Type Journal
  Year 2021 Publication Global Change Biology Abbreviated Journal  
  Volume 27 Issue 7 Pages 1457-1469  
  Keywords  
  Abstract  
  Programme 330, 388  
  Campaign  
  Address  
  Corporate Author Thesis Bachelor's thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1365-2486 ISBN Medium  
  Area Expedition Conference  
  Notes Approved yes  
  Call Number Serial 7987  
Permanent link to this record
 

 
Author Warren RL. Cairns, Clara Turetta, Niccolò Maffezzoli, Olivier Magand, Beatriz Ferreira Araujo, Hélène Angot, Delia Segato, Paolo Cristofanelli, Francesca Sprovieri, Claudio Scarchilli, Paolo Grigioni, Virginia Ciardini, Carlo Barbante, Aurélien Dommergue, Andrea Spolaor doi  openurl
  Title (up) Mercury in precipitated and surface snow at Dome C and a first estimate of mercury depositional fluxes during the Austral summer on the high Antarctic plateau Type Journal
  Year 2021 Publication Atmospheric Environment Abbreviated Journal  
  Volume 262 Issue Pages 118634  
  Keywords Atmospheric conditions High resolution sampling Snow scavenging factor Snow sublimation  
  Abstract The role of deposition fluxes on the mercury cycle at Concordia station, on the high Antarctic plateau have been investigated over the Austral summer between December 2017 to January 2018. Wet/frozen deposition was collected daily from specially sited tables, simultaneously with the collection of surface (0–3 cm) and subsurface (3–6 cm) snow and the analysis of Hg0 in the ambient air. Over the course of the experiment the atmospheric Hg0 concentrations ranged from 0.58 ± 0.19 to 1.00 ± 0.33 ng m−3, surface snow Hg concentrations varied between (0–3 cm) 0.006 ± 0.003 to 0.001 ± 0.001 ng cm−3 and subsurface snow (3–6 cm) concentrations varied between 0.001 ± 0.001 to 0.003 ± 0.002 ng cm−3. The maximum daily wet deposition flux was found to be 23 ng m−2 d−1. Despite the low temporal resolution of our measurements combined with their potential errors, the linear regression of the Hg deposition fluxes against the snow accumulation rates allowed us to estimate the mean dry deposition rate from the intercept of the graph as −0.005 +- 0.008 ng m−2 d−1. From this analysis, we conclude that wet deposition accounts for the vast majority of the Hg deposition fluxes at Concordia Station. The number of snow events, together with the continuous GEM measurements have allowed us to make a first estimation of the mean snow scavenging factor at Dome C. Using the slope of the regression of mercury flux on snow accumulation we obtained a snow scavenging factor that ranges from 0.21 to 0.22 ± 0.02 (ngHg/g snow)/(ngHg/m3 air). Our data indicate that the boundary layer height and local meteorological effects influence Hg0 reemission from the top of (0–3 cm) the snowpack into the atmosphere and into the deeper snowpack layer (3–6 cm). These data will help constrain numerical models on the behaviour of mercury in Antarctica.  
  Programme 1028  
  Campaign  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1352-2310 ISBN Medium  
  Area Expedition Conference  
  Notes Approved yes  
  Call Number Serial 8057  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print