Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Philippe Ricaud, Patrice Medina, Pierre Durand, Jean-Luc Attié, Eric Bazile, Paolo Grigioni, Massimo Del Guasta, Benji Pauly doi  openurl
  Title In Situ VTOL Drone-Borne Observations of Temperature and Relative Humidity over Dome C, Antarctica Type Journal
  Year 2023 Publication Drones Abbreviated Journal  
  Volume 7 Issue 8 Pages 532  
  Keywords Antarctica Concordia station drone free troposphere planetary boundary layer relative humidity temperature VTOL  
  Abstract The Antarctic atmosphere is rapidly changing, but there are few observations available in the interior of the continent to quantify this change due to few ground stations and satellite measurements. The Concordia station is located on the East Antarctic Plateau (75° S, 123° E, 3233 m above mean sea level), one of the driest and coldest places on Earth. Several remote sensing instruments are available at the station to probe the atmosphere, together with operational meteorological sensors. In order to observe in situ clouds, temperature, relative humidity and supercooled liquid water (SLW) at a high vertical resolution, a new project based on the use of an unmanned aerial vehicle (drone) vertical take-off and landing from the DeltaQuad Company has been set up at Concordia. A standard Vaisala pressure, temperature and relative humidity sensor was installed aboard the drone coupled to an Anasphere SLW sensor. A total of thirteen flights were conducted from 24 December 2022 to 17 January 2023: nine technology flights and four science flights (on 2, 10, 11 and 13 January 2023). Drone-based temperature and relative humidity profiles were compared to (1) the balloon-borne meteorological observations at 12:00 UTC, (2) the ground-based microwave radiometer HAMSTRAD and (3) the outputs from the numerical weather prediction models ARPEGE and AROME. No SLW clouds were present during the period of observations. Despite technical issues with drone operation due to the harsh environments encountered (altitude, temperature and geomagnetic field), the drone-based observations were consistent with the balloon-borne observations of temperature and relative humidity. The radiometer showed a systematic negative bias in temperature of 2 °C, and the two models were, in the lowermost troposphere, systematically warmer (by 2–4 °C) and moister (by 10–30%) than the drone-based observations. Our study shows the great potential of a drone to probe the Antarctic atmosphere in situ at very high vertical resolution (a few meters).  
  Programme 910  
  Campaign  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2504-446X ISBN Medium  
  Area Expedition Conference  
  Notes Approved yes  
  Call Number Serial (down) 8781  
Permanent link to this record
 

 
Author Philippe Ricaud, Massimo Del Guasta, Angelo Lupi, Romain Roehrig, Eric Bazile, Pierre Durand, Jean-Luc Attié, Alessia Nicosia, Paolo Grigioni doi  openurl
  Title Supercooled liquid water clouds observed over Dome C, Antarctica: temperature sensitivity and cloud radiative forcing Type Journal
  Year 2024 Publication Atmospheric Chemistry and Physics Abbreviated Journal  
  Volume 24 Issue 1 Pages 613-630  
  Keywords  
  Abstract Clouds affect the Earth climate with an impact that depends on the cloud nature (solid and/or liquid water). Although the Antarctic climate is changing rapidly, cloud observations are sparse over Antarctica due to few ground stations and satellite observations. The Concordia station is located on the eastern Antarctic Plateau (75∘ S, 123∘ E; 3233 m above mean sea level), one of the driest and coldest places on Earth. We used observations of clouds, temperature, liquid water, and surface irradiance performed at Concordia during four austral summers (December 2018–2021) to analyse the link between liquid water and temperature and its impact on surface irradiance in the presence of supercooled liquid water (liquid water for temperature less than 0 ∘C) clouds (SLWCs). Our analysis shows that, within SLWCs, temperature logarithmically increases from −36.0 to −16.0 ∘C when liquid water path increases from 1.0 to 14.0 g m−2. The SLWC radiative forcing is positive and logarithmically increases from 0.0 to 70.0 W m−2 when liquid water path increases from 1.2 to 3.5 g m−2. This is mainly due to the downward longwave component that logarithmically increases from 0 to 90 W m−2 when liquid water path increases from 1.0 to 3.5 g m−2. The attenuation of shortwave incoming irradiance (that can reach more than 100 W m−2) is almost compensated for by the upward shortwave irradiance because of high values of surface albedo. Based on our study, we can extrapolate that, over the Antarctic continent, SLWCs have a maximum radiative forcing that is rather weak over the eastern Antarctic Plateau (0 to 7 W m−2) but 3 to 5 times larger over West Antarctica (0 to 40 W m−2), maximizing in summer and over the Antarctic Peninsula.  
  Programme 910  
  Campaign  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1680-7316 ISBN Medium  
  Area Expedition Conference  
  Notes Approved yes  
  Call Number Serial (down) 8780  
Permanent link to this record
 

 
Author Armelle Poisson, Thierry Boulinier, Laure Bournez, Gaëlle Gonzalez, Camille V. Migné, Sara Moutailler, Bruno Faivre, Raphaëlle Métras doi  openurl
  Title Tick-borne zoonotic flaviviruses and Borrelia infections in wildlife hosts: What have field studies contributed? Type Journal
  Year 2024 Publication One Health Abbreviated Journal  
  Volume 18 Issue Pages 100747  
  Keywords Flavivirus Host Reservoir Sentinel Tick-borne diseases Wildlife  
  Abstract Tick-borne flaviviruses and Borrelia spp. are globally spread pathogens of zoonotic potential that are maintained by a transmission cycle at the interface between ticks and vertebrate hosts, mainly wild animals. Aside data on pathogen burden in ticks, information on the status of various hosts relative to infection is important to acquire. We reviewed how those infections have been studied in wildlife host species in the field to discuss how collected data provided relevant epidemiological information and to identify needs for further studies. The literature was screened for observational studies on pathogen or antibody detection for tick-borne Borrelia spp. and flaviviruses in wildlife host animals. Overall, Borrelia spp. were more studied (73% of case studies, representing 297 host species) than flaviviruses (27% of case studies, representing 114 host species). Studies on both Borrelia spp. and flaviviruses focused mainly on the same species, namely bank vole and yellow-necked mouse. Most studies were order-specific and cross-sectional, reporting prevalence at various locations, but with little insight into the underlying epidemiological dynamics. Host species with potential to act as reservoir hosts of these pathogens were neglected, notably birds. We highlight the necessity of collecting both demographics and infection data in wildlife studies, and to consider communities of species, to better estimate zoonotic risk potential in the One Health context.  
  Programme 1151  
  Campaign  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2352-7714 ISBN Medium  
  Area Expedition Conference  
  Notes Approved yes  
  Call Number Serial (down) 8779  
Permanent link to this record
 

 
Author Melissa L. Grunst, Andrea S. Grunst, David Grémillet, Akiko Kato, Sophie Gentès, Jérôme Fort doi  isbn
openurl 
  Title Keystone seabird may face thermoregulatory challenges in a warming Arctic Type Journal
  Year 2023 Publication Scientific Reports Abbreviated Journal  
  Volume 13 Issue 1 Pages 16733  
  Keywords Climate-change ecology Ecophysiology  
  Abstract Climate change affects the Arctic more than any other region, resulting in evolving weather, vanishing sea ice and altered biochemical cycling, which may increase biotic exposure to chemical pollution. We tested thermoregulatory impacts of these changes on the most abundant Arctic seabird, the little auk (Alle alle). This small diving species uses sea ice-habitats for foraging on zooplankton and resting. We equipped eight little auks with 3D accelerometers to monitor behavior, and ingested temperature recorders to measure body temperature (Tb). We also recorded weather conditions, and collected blood to assess mercury (Hg) contamination. There were nonlinear relationships between time engaged in different behaviors and Tb. Tb increased on sea ice, following declines while foraging in polar waters, but changed little when birds were resting on water. Tb also increased when birds were flying, and decreased at the colony after being elevated during flight. Weather conditions, but not Hg contamination, also affected Tb. However, given our small sample size, further research regarding thermoregulatory effects of Hg is warranted. Results suggest that little auk Tb varies with behavior and weather conditions, and that loss of sea ice due to global warming may cause thermoregulatory and energic challenges during foraging trips at sea.  
  Programme 388  
  Campaign  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN 2045-2322 Medium  
  Area Expedition Conference  
  Notes Approved yes  
  Call Number Serial (down) 8778  
Permanent link to this record
 

 
Author Alice Carravieri, Sophie Lorioux, Frédéric Angelier, Olivier Chastel, Céline Albert, Vegard Sandøy Bråthen, Émile Brisson-Curadeau, Manon Clairbaux, Karine Delord, Mathieu Giraudeau, Samuel Perret, Timothée Poupart, Cécile Ribout, Amélia Viricel-Pante, David Grémillet, Paco Bustamante, Jérôme Fort doi  openurl
  Title Carryover effects of winter mercury contamination on summer concentrations and reproductive performance in little auks Type Journal
  Year 2023 Publication Environmental Pollution Abbreviated Journal  
  Volume 318 Issue Pages 120774  
  Keywords Blood Chick growth Feathers Migration Reproduction Seabird Telomeres  
  Abstract Many animals migrate after reproduction to respond to seasonal environmental changes. Environmental conditions experienced on non-breeding sites can have carryover effects on fitness. Exposure to harmful chemicals can vary widely between breeding and non-breeding grounds, but its carryover effects are poorly studied. Mercury (Hg) contamination is a major concern in the Arctic. Here, we quantified winter Hg contamination and its carryover effects in the most abundant Arctic seabird, the little auk Alle alle. Winter Hg contamination of birds from an East Greenland population was inferred from head feather concentrations. Birds tracked with Global Location Sensors (GLS, N = 28 of the total 92) spent the winter in western and central North Atlantic waters and had increasing head feather Hg concentrations with increasing longitude (i.e., eastward). This spatial pattern was not predicted by environmental variables such as bathymetry, sea-surface temperature or productivity, and needs further investigation. Hg concentrations in head feathers and blood were strongly correlated, suggesting a carryover effect of adult winter contamination on the consequent summer concentrations. Head feather Hg concentrations had no clear association with telomere length, a robust fitness indicator. In contrast, carryover negative effects were detected on chick health, as parental Hg contamination in winter was associated with decreasing growth rate of chicks in summer. Head feather Hg concentrations of females were not associated with egg membrane Hg concentrations, or with egg volume. In addition, parental winter Hg contamination was not related to Hg burdens in chicks’ body feathers. Therefore, we hypothesise that the association between parental winter Hg exposure and the growth of their chick results from an Hg-related decrease in parental care, and needs further empirical evidence. Our results stress the need of considering parental contamination on non-breeding sites to understand Hg trans-generational effects in migrating seabirds, even at low concentrations.  
  Programme 388  
  Campaign  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0269-7491 ISBN Medium  
  Area Expedition Conference  
  Notes Approved yes  
  Call Number Serial (down) 8777  
Permanent link to this record
 

 
Author Julian E. Beaman, Craig R. White, Manon Clairbaux, Samuel Perret, Jérôme Fort, David Grémillet doi  openurl
  Title Cold adaptation does not handicap warm tolerance in the most abundant Arctic seabird Type Journal
  Year 2024 Publication Proceedings of the Royal Society B: Biological Sciences Abbreviated Journal  
  Volume 291 Issue 2015 Pages 20231887  
  Keywords Animal energetics dovekie ecophysiology evolutionary legacy global warming phylogenic analyses  
  Abstract Arctic birds and mammals are physiologically adapted to survive in cold environments but live in the fastest warming region on the planet. They should therefore be most threatened by climate change. We fitted a phylogenetic model of upper critical temperature (TUC) in 255 bird species and determined that TUC for dovekies (Alle alle; 22.4°C)—the most abundant seabird in the Arctic—is 8.8°C lower than predicted for a bird of its body mass (150 g) and habitat latitude. We combined our comparative analysis with in situ physiological measurements on 36 dovekies from East Greenland and forward-projections of dovekie energy and water expenditure under different climate scenarios. Based on our analyses, we demonstrate that cold adaptation in this small Arctic seabird does not handicap acute tolerance to air temperatures up to at least 15°C above their current maximum. We predict that climate warming will reduce the energetic costs of thermoregulation for dovekies, but their capacity to cope with rising temperatures will be constrained by water intake and salt balance. Dovekies evolved 15 million years ago, and their thermoregulatory physiology might also reflect adaptation to a wide range of palaeoclimates, both substantially warmer and colder than the present day.  
  Programme 388  
  Campaign  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved yes  
  Call Number Serial (down) 8776  
Permanent link to this record
 

 
Author Erwan Piot, Baptiste Picard, Jérôme Badaut, Caroline Gilbert, Christophe Guinet doi  openurl
  Title Diving behaviour of southern elephant seals: new models of behavioural and ecophysiological adjustments of oxygen store management Type Journal
  Year 2023 Publication Journal of experimental biology Abbreviated Journal  
  Volume 226 Issue 13 Pages jeb245157  
  Keywords  
  Abstract Among pinnipeds, southern elephant seals (SESs, Mirounga leonina) are extreme divers that dive deeply and continuously along foraging trips to restore their body stores after fasting on land during breeding or moulting. Their replenishment of body stores influences their energy expenditure during dives and their oxygen (O2) reserves (via muscular mass), yet how they manage their O2 stores during their dives is not fully understood. In this study, 63 female SESs from Kerguelen Island were equipped with accelerometers and time–depth recorders to investigate changes in diving parameters through their foraging trips. Two categories of dive behaviour were identified and related to the body size of individuals, with smaller SESs performing shallower and shorter dives requiring greater mean stroke amplitude compared with larger individuals. In relation to body size, the larger seals had lower estimated oxygen consumption levels for a given buoyancy (i.e. body density) compared with smaller individuals. However, both groups were estimated to have the same oxygen consumption of 0.079±0.001 ml O2 stroke−1 kg−1 for a given dive duration and at neutral buoyancy when the cost of transport was minimal. Based on these relationships, we built two models that estimate changes in oxygen consumption according to dive duration and body density. The study highlights that replenishing body stores improves SES foraging efficiency, as indicated by increased time spent at the bottom of the ocean. Thus, prey–capture attempts increase as SES buoyancy approaches the neutral buoyancy point.  
  Programme 1201  
  Campaign  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-0949 ISBN Medium  
  Area Expedition Conference  
  Notes Approved yes  
  Call Number Serial (down) 8775  
Permanent link to this record
 

 
Author Clive R. McMahon, Mark A. Hindell, Jean Benoit Charrassin, Richard Coleman, Christophe Guinet, Robert Harcourt, Sara Labrousse, Benjemin Raymond, Michael Sumner, Natalia Ribeiro doi  openurl
  Title Southern Ocean pinnipeds provide bathymetric insights on the East Antarctic continental shelf Type Journal
  Year 2023 Publication Communications Earth & Environment Abbreviated Journal  
  Volume 4 Issue 1 Pages 1-10  
  Keywords Environmental sciences Ocean sciences  
  Abstract Poor coverage of the Antarctic continental shelf bathymetry impedes understanding the oceanographic processes affecting Antarctica’s role in global climate. Continental shelf bathymetry influences warm modified Circumpolar Deep Water movement onto the shelf, making it an important factor promoting ice shelf melting and influencing the flow of ice shelves into the ocean. Building on previous work using seal dives to redefine bathymetry, our longitudinal study of ocean physics and animal behaviour provided new depth information from over 500,000 individual seal dives on the East Antarctic continental shelf. About 25% of these seal dives were 220 m (sometimes over 1000 m) deeper than the interpolated seafloor from IBCSO V2. Focusing on four well-sampled regions, we show that the bathymetry of 22% to 60% of the sampled area was improved by incorporating seal dive data. This revealed new bathymetric features, including troughs off the Shackleton Ice Shelf and Underwood Glacier and a deep canyon near the Vanderford Glacier. This deep canyon, the Mirounga-Nuyina Canyon, was confirmed by a recent multi-beam echo sounder survey. Further acquisitions of seal data will improve our understanding and modelling of Antarctic coastal ocean processes and ice-sheet dynamics.  
  Programme 1201  
  Campaign  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2662-4435 ISBN Medium  
  Area Expedition Conference  
  Notes Approved yes  
  Call Number Serial (down) 8774  
Permanent link to this record
 

 
Author Pauline Goulet, Christophe Guinet, René Swift, Peter T. Madsen, Mark Johnson doi  openurl
  Title A miniature biomimetic sonar and movement tag to study the biotic environment and predator-prey interactions in aquatic animals Type Journal
  Year 2019 Publication Deep Sea Research Part I: Oceanographic Research Papers Abbreviated Journal  
  Volume 148 Issue Pages 1-11  
  Keywords Biologging Elephant seal Fisheries sonar Foraging ecology Predator-prey interactions Prey field mapping  
  Abstract How predators find, select and capture prey is central to understanding trophic cascades and ecosystem structure. But despite advances in biologging technology, obtaining in situ observations of organisms and their interactions remains challenging in the marine environment. For some species of toothed whales, echoes from organisms insonified by echolocation clicks and recorded by sound logging tags have provided a fine-scale view of prey density, and predator and prey behaviour during capture attempts, but such information is not available for marine predators that do not echolocate. Here the development and performance of a miniature biomimetic sonar and movement tag capable of acquiring similar data from non-echolocating marine predators is reported. The tag, weighing 200 g in air, records wide bandwidth sonar data at up to 50 pings a second synchronously with fast-sampling sensors for depth, acceleration, magnetic field and GPS. This sensor suite enables biotic conditions and predator behaviour to be related to geographic location over long-duration foraging trips by apex marine predators. The sonar operates at 1.5 MHz with a 3.4° beamwidth and a source level of 190 dB re 1  μPa at 1 m. Sonar recordings from a trial deployment of the tag on a southern elephant seal contained frequent targets corresponding to small organisms up to 6 m ahead of the tagged animal. Synchronously sampled movement data allowed interpretation of whether the seal attempted to capture organisms that it approached closely while the high sonar ping rate revealed attempts by prey to escape. Results from this trial demonstrate the ability of the tag to quantify the biotic environment and to track individual prey captures, providing fine-scale information on predator-prey interactions which has been difficult to obtain from non-echolocating marine animals.  
  Programme 1201  
  Campaign  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0967-0637 ISBN Medium  
  Area Expedition Conference  
  Notes Approved yes  
  Call Number Serial (down) 8773  
Permanent link to this record
 

 
Author Chengbin Peng, Carlos M. Duarte, Daniel P. Costa, Christophe Guinet, Robert G. Harcourt, Mark A. Hindell, Clive R. McMahon, Monica Muelbert, Michele Thums, Ka-Chun Wong, Xiangliang Zhang doi  openurl
  Title Deep Learning Resolves Representative Movement Patterns in a Marine Predator Species Type Journal
  Year 2019 Publication Applied Sciences Abbreviated Journal  
  Volume 9 Issue 14 Pages 2935  
  Keywords marine animal movement analysis recurrent neural networks representative patterns  
  Abstract The analysis of animal movement from telemetry data provides insights into how and why animals move. While traditional approaches to such analysis mostly focus on predicting animal states during movement, we describe an approach that allows us to identify representative movement patterns of different animal groups. To do this, we propose a carefully designed recurrent neural network and combine it with telemetry data for automatic feature extraction and identification of non-predefined representative patterns. In the experiment, we consider a particular marine predator species, the southern elephant seal, as an example. With our approach, we identify that the male seals in our data set share similar movement patterns when they are close to land. We identify this pattern recurring in a number of distant locations, consistent with alternative approaches from previous research.  
  Programme 1201  
  Campaign  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2076-3417 ISBN Medium  
  Area Expedition Conference  
  Notes Approved yes  
  Call Number Serial (down) 8772  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print