|   | 
Details
   web
Records
Author Thomas Frederikse, Surendra Adhikari, Tim J. Daley, Sönke Dangendorf, Roland Gehrels, Felix Landerer, Marta Marcos, Thomas L. Newton, Graham Rush, Aimée B. A. Slangen, Guy Wöppelmann
Title Constraining 20th-Century Sea-Level Rise in the South Atlantic Ocean Type Journal
Year 2021 Publication (down) Journal of Geophysical Research: Oceans Abbreviated Journal
Volume 126 Issue 3 Pages e2020JC016970
Keywords data rescue salt-marsh proxies sea-level changes South Atlantic tide gauges
Abstract Sea level in the South Atlantic Ocean has only been measured at a small number of tide-gauge locations, which causes considerable uncertainty in 20th-century sea-level trend estimates in this basin. To obtain a better-constrained sea-level trend in the South Atlantic Ocean, this study aims to answer two questions. The first question is: can we combine new observations, vertical land motion estimates, and information on spatial sampling biases to obtain a likely range of 20th-century sea-level rise in the South Atlantic? We combine existing observations with recovered observations from Dakar and a high-resolution sea-level reconstruction based on salt-marsh sediments from the Falkland Islands and find that the rate of sea-level rise in the South Atlantic has likely been between 1.1 and 2.2 mm year−1 (5%–95% confidence intervals), with a central estimate of 1.6 mm year−1. This rate is on the high side, but not statistically different compared to global-mean trends from recent reconstructions. The second question is: are there any physical processes that could explain a large deviation from the global-mean sea-level trend in the South Atlantic? Sterodynamic (changes in ocean dynamics and steric effects) and gravitation, rotation, and deformation effects related to ice mass loss and land water storage have probably led to a 20th-century sea-level trend in the South Atlantic above the global mean. Both observations and physical processes thus suggest that 20th-century sea-level rise in the South Atlantic has been about 0.3 mm year−1 above the rate of global-mean sea-level rise, although even with the additional observations, the uncertainties are still too large to distinguish a statistically significant difference.
Programme 688
Campaign
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2169-9291 ISBN Medium
Area Expedition Conference
Notes Approved yes
Call Number Serial 8603
Permanent link to this record
 

 
Author R. Sulzbach, H. Dobslaw, M. Thomas
Title High-Resolution Numerical Modeling of Barotropic Global Ocean Tides for Satellite Gravimetry Type Journal
Year 2021 Publication (down) Journal of Geophysical Research: Oceans Abbreviated Journal
Volume 126 Issue 5 Pages e2020JC017097
Keywords M2-tide minor tides pole-rotation self-attraction and loading tide-generating potential topographic wavedrag
Abstract The recently upgraded barotropic tidal model TiME is employed to study the influence of fundamental tidal processes, the chosen model resolution, and the bathymetric map on the achievable model accuracy, exemplary for the M2 tide. Additionally, the newly introduced pole-rotation scheme allows to estimate the model’s inherent precision (open ocean rms: 0.90 cm) and enables studies of the Arctic domain without numerical deviations originating from pole cap handling. We find that the smallest open ocean rms with respect to the FES14-atlas (3.39 cm) is obtained when tidal dissipation is carried out to similar parts by quadratic bottom friction, wave drag, and parametrized eddy-viscosity. This setting proves versatile to obtaining high accuracy values for a diverse ensemble of additional partial tides. Using the preferred model settings, we show that for certain minor tides it is possible to obtain solutions that are more accurate than results derived with admittance assumptions from data-constrained tidal atlases. As linear admittance derived minor tides are routinely used for de-aliasing of satellite gravimetric data, this opens the potential for improving gravity field products by employing the solutions from TiME.
Programme 688
Campaign
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2169-9291 ISBN Medium
Area Expedition Conference
Notes Approved yes
Call Number Serial 8605
Permanent link to this record
 

 
Author Steven Franke, Daniela Jansen, Sebastian Beyer, Niklas Neckel, Tobias Binder, John Paden, Olaf Eisen
Title Complex Basal Conditions and Their Influence on Ice Flow at the Onset of the Northeast Greenland Ice Stream Type Journal
Year 2021 Publication (down) Journal of Geophysical Research: Earth Surface Abbreviated Journal
Volume 126 Issue 3 Pages e2020JF005689
Keywords basal roughness bed conditions Greenland Ice Sheet ice stream Northeast Greenland Ice Stream radio-echo sounding
Abstract Abstract The ice stream geometry and large ice surface velocities at the onset region of the Northeast Greenland Ice Stream (NEGIS) are not yet well reproduced by ice sheet models. The quantification of basal sliding and a parametrization of basal conditions remains a major gap. In this study, we assess the basal conditions of the onset region of the NEGIS in a systematic analysis of airborne ultra-wideband radar data. We evaluate basal roughness and basal return echoes in the context of the current ice stream geometry and ice surface velocity. We observe a change from a smooth to a rougher bed where the ice stream widens, and a distinct roughness anisotropy, indicating a preferred orientation of subglacial structures. In the upstream region, the excess ice mass flux through the shear margins is evacuated by ice flow acceleration and along-flow stretching of the ice. At the downstream part, the generally rougher bed topography correlates with a decrease in flow acceleration and lateral variations in ice surface velocity. Together with basal water routing pathways, this hints to two different zones in this part of the NEGIS: the upstream region collecting water, with a reduced basal traction, and downstream, where the ice stream is slowing down and is widening on a rougher bed, with a distribution of basal water toward the shear margins. Our findings support the hypothesis that the NEGIS is strongly interconnected to the subglacial water system in its onset region, but also to the subglacial substrate and morphology.
Programme 1180
Campaign
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2169-9003 ISBN Medium
Area Expedition Conference
Notes Approved yes
Call Number Serial 7272
Permanent link to this record
 

 
Author Jonathan D. Wille, Vincent Favier, Irina V. Gorodetskaya, Cécile Agosta, Christoph Kittel, Jai Chowdhry Beeman, Nicolas C. Jourdain, Jan T. M. Lenaerts, Francis Codron
Title Antarctic Atmospheric River Climatology and Precipitation Impacts Type Journal
Year 2021 Publication (down) Journal of Geophysical Research: Atmospheres Abbreviated Journal
Volume 126 Issue 8 Pages e2020JD033788
Keywords Antarctica atmospheric rivers climatology meteorology
Abstract The Antarctic ice sheet (AIS) is sensitive to short-term extreme meteorological events that can leave long-term impacts on the continent's surface mass balance (SMB). We investigate the impacts of atmospheric rivers (ARs) on the AIS precipitation budget using an AR detection algorithm and a regional climate model (Modèle Atmosphérique Régional) from 1980 to 2018. While ARs and their associated extreme vapor transport are relatively rare events over Antarctic coastal regions (∼3 days per year), they have a significant impact on the precipitation climatology. ARs are responsible for at least 10% of total accumulated snowfall across East Antarctica (localized areas reaching 20%) and a majority of extreme precipitation events. Trends in AR annual frequency since 1980 are observed across parts of AIS, most notably an increasing trend in Dronning Maud Land; however, interannual variability in AR frequency is much larger. This AR behavior appears to drive a significant portion of annual snowfall trends across East Antarctica, while controlling the interannual variability of precipitation across most of the AIS. AR landfalls are most likely when the circumpolar jet is highly amplified during blocking conditions in the Southern Ocean. There is a fingerprint of the Southern Annular Mode (SAM) on AR variability in West Antarctica with SAM+ (SAM−) favoring increased AR frequency in the Antarctic Peninsula (Amundsen-Ross Sea coastline). Given the relatively large influence ARs have on precipitation across the continent, it is advantageous for future studies of moisture transport to Antarctica to consider an AR framework especially when considering future SMB changes.
Programme 411
Campaign
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2169-8996 ISBN Medium
Area Expedition Conference
Notes Approved yes
Call Number Serial 8327
Permanent link to this record
 

 
Author A. Barbero, J. Savarino, R. Grilli, C. Blouzon, G. Picard, M. M. Frey, Y. Huang, N. Caillon
Title New Estimation of the NOx Snow-Source on the Antarctic Plateau Type Journal
Year 2021 Publication (down) Journal of Geophysical Research: Atmospheres Abbreviated Journal
Volume 126 Issue 20 Pages e2021JD035062
Keywords Antarctic Plateau flux chamber nitrate photolysis snowpack emissions
Abstract To fully decipher the role of nitrate photolysis on the atmospheric oxidative capacity in snow-covered regions, NOx flux must be determined with more precision than existing estimates. Here, we introduce a method based on dynamic flux chamber measurements for evaluating the NOx production by photolysis of snowpack nitrate in Antarctica. Flux chamber experiments were conducted for the first time in Antarctica, at the French-Italian station Concordia, Dome C (75°06'S, 123°20’E, 3233 m a.s.l) during the 2019–2020 summer campaign. Measurements were gathered with several snow samples of different ages ranging from newly formed drifted snow to 6-year-old firn. Contrary to existing literature expectations, the daily average photolysis rate coefficient, , did not significantly vary between differently aged snow samples, suggesting that the photolabile nitrate in snow behaves as a single-family source with common photochemical properties, where a = (2.37 0.35) × 10−8 s−1 (1) has been calculated from December 10th 2019 to January 7th 2020. At Dome C summer daily average NOx flux, , based on measured NOx production rates was estimated to be (4.3 1.2) × 108 molecules cm−2 s−1, which is 1.5–7 times less than the net NOx flux observed previously above snow at Dome C using the gradient flux method. Using these results, we extrapolated an annual continental snow sourced NOx budget of 0.017 0.003 TgN y−1, 2 times the nitrogen budget, (N-budget), of the stratospheric denitrification previously estimated for Antarctica. These quantifications of nitrate photolysis using flux chamber experiments provide a road-map toward a new parameterization of the product that can improve future global and regional models of atmospheric chemistry.
Programme 1177
Campaign
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2169-8996 ISBN Medium
Area Expedition Conference
Notes Approved yes
Call Number Serial 8393
Permanent link to this record
 

 
Author S. Ishino, S. Hattori, M. Legrand, Q. Chen, B. Alexander, J. Shao, J. Huang, L. Jaeglé, B. Jourdain, S. Preunkert, A. Yamada, N. Yoshida, J. Savarino
Title Regional Characteristics of Atmospheric Sulfate Formation in East Antarctica Imprinted on 17O-Excess Signature Type Journal
Year 2021 Publication (down) Journal of Geophysical Research: Atmospheres Abbreviated Journal
Volume 126 Issue 6 Pages e2020JD033583
Keywords aerosols Antarctica isotope methanesulfonate sulfate
Abstract 17O-excess (Δ17O = δ17O − 0.52 × δ18O) of sulfate trapped in Antarctic ice cores has been proposed as a potential tool for assessing past oxidant chemistry, while insufficient understanding of atmospheric sulfate formation around Antarctica hampers its interpretation. To probe influences of regional specific chemistry, we compared year-round observations of Δ17O of non-sea-salt sulfate in aerosols (Δ17O(SO42−)nss) at Dome C and Dumont d'Urville, inland and coastal sites in East Antarctica, throughout the year 2011. Although Δ17O(SO42−)nss at both sites showed consistent seasonality with summer minima (∼1.0‰) and winter maxima (∼2.5‰) owing to sunlight-driven changes in the relative importance of O3 oxidation to OH and H2O2 oxidation, significant intersite differences were observed in austral spring–summer and autumn. The cooccurrence of higher Δ17O(SO42−)nss at inland (2.0‰ ± 0.1‰) than the coastal site (1.2‰ ± 0.1‰) and chemical destruction of methanesulfonate (MS–) in aerosols at inland during spring–summer (October–December), combined with the first estimated Δ17O(MS–) of ∼16‰, implies that MS– destruction produces sulfate with high Δ17O(SO42−)nss of ∼12‰. If contributing to the known postdepositional decrease of MS– in snow, this process should also cause a significant postdepositional increase in Δ17O(SO42−)nss over 1‰, that can reconcile the discrepancy between Δ17O(SO42−)nss in the atmosphere and ice. The higher Δ17O(SO42−)nss at the coastal site than inland during autumn (March–May) may be associated with oxidation process involving reactive bromine and/or sea-salt particles around the coastal region.
Programme 1177
Campaign
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2169-8996 ISBN Medium
Area Expedition Conference
Notes Approved yes
Call Number Serial 8412
Permanent link to this record
 

 
Author Benjamin Pohl, Vincent Favier, Jonathan Wille, Danielle G Udy, Tessa R Vance, Julien Pergaud, Niels Dutrievoz, Juliette Blanchet, Christoph Kittel, Charles Amory, Gerhard Krinner, Francis Codron
Title Relationship Between Weather Regimes and Atmospheric Rivers in East Antarctica Type Journal
Year 2021 Publication (down) Journal of Geophysical Research: Atmospheres Abbreviated Journal
Volume 126 Issue 24 Pages e2021JD035294
Keywords atmospheric rivers East Antarctica snowfall amounts temperature anomalies weather regimes
Abstract Here, we define weather regimes in the East Antarctica—Southern Ocean sector based on daily anomalies of 700 hPa geopotential height derived from ERA5 reanalysis during 1979–2018. Most regimes and their preferred transitions depict synoptic-scale disturbances propagating eastwards off the Antarctic coastline. While regime sequences are generally short, their interannual variability is strongly driven by the polarity of the Southern Annular Mode (SAM). Regime occurrences are then intersected with atmospheric rivers (ARs) detected over the same region and period. ARs are equiprobable throughout the year, but clearly concentrate during regimes associated with a strong atmospheric ridges/blockings on the eastern part of the domain, which act to channel meridional advection of heat and moisture from the lower latitudes towards Antarctica. Both regimes and ARs significantly shape climate variability in Antarctica. Regimes favorable to AR occurrences are associated with anomalously warm and humid conditions in coastal Antarctica and, to a lesser extent, the hinterland parts of the Antarctic plateau. These anomalies are strongly enhanced during AR events, with warmer anomalies and dramatically amplified snowfall amounts. Large-scale conditions favoring AR development are finally explored. They show weak dependency to the SAM, but particularly strong atmospheric ridges/blockings over the Southern Ocean appear as the most favorable pattern, in which ARs can be embedded, and to which they contribute.
Programme 411
Campaign
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2169-8996 ISBN Medium
Area Expedition Conference
Notes Approved yes
Call Number Serial 8430
Permanent link to this record
 

 
Author Richard D. Ray, Bryant D. Loomis, Victor Zlotnicki
Title The mean seasonal cycle in relative sea level from satellite altimetry and gravimetry Type Journal
Year 2021 Publication (down) Journal of Geodesy Abbreviated Journal
Volume 95 Issue 7 Pages 80
Keywords Annual geocenter motion Annual land motion Annual/semiannual cycle Satellite altimetry
Abstract Satellite altimetry and gravimetry are used to determine the mean seasonal cycle in relative sea level, a quantity relevant to coastal flooding and related applications. The main harmonics (annual, semiannual, terannual) are estimated from 25 years of gridded altimetry, while several conventional altimeter “corrections” (gravitational tide, pole tide, and inverted barometer) are restored. To transform from absolute to relative sea levels, a model of vertical land motion is developed from a high-resolution seasonal mass inversion estimated from satellite gravimetry. An adjustment for annual geocenter motion accounts for use of a center-of-mass reference frame in satellite orbit determination. A set of 544 test tide gauges, from which seasonal harmonics have been estimated from hourly measurements, is used to assess how accurately each adjustment to the altimeter data helps converge the results to true relative sea levels. At these gauges, the median annual and semiannual amplitudes are 7.1 cm and 2.2 cm, respectively. The root-mean-square differences with altimetry are 3.24 and 1.17 cm, respectively, which are reduced to 1.93 and 0.86 cm after restoration of corrections and adjustment for land motion. Example outliers highlight some limitations of present-day coastal altimetry owing to inadequate spatial resolution: upwelling and currents off Oregon and wave setup at Minamitori Island.
Programme 688
Campaign
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1432-1394 ISBN Medium
Area Expedition Conference
Notes Approved yes
Call Number Serial 8610
Permanent link to this record
 

 
Author Sindre H. Eldøy, Jan G. Davidsen, Matthias Vignon, Michael Power
Title The biology and feeding ecology of Arctic charr in the Kerguelen Islands Type Journal
Year 2021 Publication (down) Journal of Fish Biology Abbreviated Journal
Volume 98 Issue 2 Pages 526-536
Keywords
Abstract Subsequent to their introduction in the 1950s, Arctic charr Salvelinus alpinus have been able to establish a self-sustaining population that has adapted to the unique conditions of the sub-Antarctic Kerguelen Islands. Here, 48 individuals (198–415 mm) were caught with gillnets and their basic biology and feeding ecology were examined using stable isotope analysis. The Lac des Fougères population split use of littoral and pelagic resources evenly, although larger fish relied more heavily on littoral production and appear to follow the size-dependent life history habitat template seen in many Scandinavian lakes where smaller sized individuals occupy the pelagic zone and larger individuals dominate the littoral habitat. In Kerguelen, Arctic charr mature at the same ages (5.6 years) as Arctic charr in both sub-Arctic and Arctic lakes. Although mortality was average in comparison to comparator sub-Arctic lakes, it was high in comparison to Arctic lakes. Maximal age (>7+) was at the lower end of the range typically seen in sub-Arctic lakes. Although they inhabit a resource-poor environment, Kerguelen Arctic charr showed no evidence of cannibalism. Thus, while Arctic charr can survive and reproduce in the relatively unproductive Kerguelen lake environments, survival and growth nevertheless appear to be traded off against survival and longevity. The uniqueness of the population location and the recency of its introduction suggest that further monitoring of the population has the potential to yield valuable insights into both the adaptability of the species and its likely responses to ongoing large-scale environmental change as represented by climate change.
Programme 1041
Campaign
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1095-8649 ISBN Medium
Area Expedition Conference
Notes Approved yes
Call Number Serial 8178
Permanent link to this record
 

 
Author G. Hubert, S. Aubry
Title Simulation of atmospheric cosmic-rays and their impacts based on pre-calculated databases, physical models and computational methods Type Journal
Year 2021 Publication (down) Journal of Computational Science Abbreviated Journal
Volume 51 Issue Pages 101307
Keywords Ambient dose equivalent Atmospheric cosmic-rays Cosmogenic nuclide production Multi-physics Single event effect
Abstract The atmospheric cosmic-ray environment is composed of secondary particles produced when primary cosmic rays interact with the nucleus of atmospheric atoms. Modeling of atmospheric radiations is essential for investigating their impacts on human activities such as radiation risks in aviation or scientific fields such as cosmogenic dating. The nuclear transport codes are a common and accurate way to model the cosmic ray interaction in the atmosphere with minimal approximations. However, tracking all produced secondary particles in each event in the whole depth of the atmosphere and sampling many events to obtain the statistically meaningful results would be a computational challenge and disadvantageous from the point of view of time consumption. This paper presents a computational platform names ATMOS CORE based on pre-calculated databases coupled to physical models and computational methods. The fields of application concern the atmospheric cosmic-rays characterization as well as their effects on electronics systems, on the ambient dose for aircrews or the cosmogenic nuclide production for dating activities. Some comparisons between simulations and measurements are also presented and discussed.
Programme 1112
Campaign
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1877-7503 ISBN Medium
Area Expedition Conference
Notes Approved yes
Call Number Serial 7957
Permanent link to this record