Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Benjamin Merkel, Sébastien Descamps, Nigel G. Yoccoz, David Grémillet, Per Fauchald, Jóhannis Danielsen, Francis Daunt, Kjell Einar Erikstad, Aleksey V. Ezhov, Mike P. Harris, Maria Gavrilo, Svein-Håkon Lorentsen, Tone K. Reiertsen, Geir H. Systad, Thorkell Lindberg Thórarinsson, Sarah Wanless, Hallvard Strøm doi  openurl
  Title Strong migratory connectivity across meta-populations of sympatric North Atlantic seabirds Type Journal
  Year 2021 Publication Marine Ecology Progress Series Abbreviated Journal  
  Volume SEA Issue Pages  
  Keywords Environmental niche Inter-population mixing Large-scale spatiotemporal dynamics Light-level geolocation Murres Population spread Seasonality  
  Abstract Identifying drivers of population trends in migratory species is difficult, as they can face many stressors while moving through different areas and environments during the annual cycle. To understand the potential of migrants to adjust to perturbations, it is critical to study the connection of different areas used by different populations during the annual cycle (i.e. migratory connectivity). Using a large-scale tracking data set of 662 individual seabirds from 2 sympatric auk meta-populations (common guillemots Uria aalge and Brünnich’s guillemots U. lomvia) breeding in 12 colonies throughout the Northeast Atlantic, we estimated migratory connectivity in seasonal space use as well as occupied environmental niches. We found strong migratory connectivity, within and between species. This was apparent through a combination of seasonal space use and occupied environmental niches. Brünnich’s guillemot populations grouped into 2 and common guillemot populations into 5 previously undescribed spatiotemporal clusters. Common guillemot populations clustered in accordance with the variable population trends exhibited by the species, while Brünnich’s guillemot populations are declining everywhere where known within the study area. Individuals from different breeding populations in both species were clustered in their space and environmental use, utilising only a fraction of the potential species-wide range. Further, space use varied among seasons, emphasising the variable constraints faced by both species during the different stages of their annual cycle. Our study highlights that considering spatiotemporal dynamics, not only in space but also in occupied environmental niches, improves our understanding of migratory connectivity and thus population vulnerability in the context of global change.  
  Programme (up) 388  
  Campaign  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0171-8630, 1616-1599 ISBN Medium  
  Area Expedition Conference  
  Notes Approved yes  
  Call Number Serial 8027  
Permanent link to this record
 

 
Author Sébastien Descamps, Benjamin Merkel, Hallvard Strøm, Rémi Choquet, Harald Steen, Jérome Fort, Maria Gavrilo, David Grémillet, Dariusz Jakubas, Kurt Jerstad, Nina J. Karnovsky, Yuri V. Krasnov, Børge Moe, Jorg Welcker, Katarzyna Wojczulanis-Jakubas doi  openurl
  Title Sharing wintering grounds does not synchronize annual survival in a high Arctic seabird, the little auk Type Journal
  Year 2021 Publication Marine Ecology Progress Series Abbreviated Journal  
  Volume 676 Issue Pages 233-242  
  Keywords Alle alle Capture-mark-recapture Geolocator Migration Non-breeding distribution Synchrony  
  Abstract Sharing the same wintering grounds by avian populations breeding in various areas may synchronize fluctuations in vital rates, which could increase the risk of extinction. Here, by combining multi-colony tracking with long-term capture-recapture data, we studied the winter distribution and annual survival of the most numerous Arctic seabird, the little auk Alle alle. We assessed whether little auks from different breeding populations in Svalbard and Franz Josef Land use the same wintering grounds and if this leads to synchronized survival. Our results indicate that birds from the Svalbard colonies shared similar wintering grounds, although differences existed in the proportion of birds from each colony using the different areas. Little auks from Franz Josef Land generally spent the winter in a separate area, but some individuals wintered in the Iceland Sea with Svalbard populations. Survival data from 3 Svalbard colonies collected in 2005-2018 indicated that sharing wintering grounds did not synchronize little auk annual survival rates. However, it is clear that the Iceland Sea is an important wintering area for little auks, and environmental changes in this area could have widespread impacts on many populations.  
  Programme (up) 388  
  Campaign  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0171-8630, 1616-1599 ISBN Medium  
  Area Expedition Conference  
  Notes Approved yes  
  Call Number Serial 8419  
Permanent link to this record
 

 
Author Grémillet, David openurl 
  Title Les manchots de Mandela et autres récits océaniques Type Book
  Year 2021 Publication Abbreviated Journal  
  Volume Issue Pages 232 pages  
  Keywords  
  Abstract  
  Programme (up) 388  
  Campaign  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 978-2-330-15652-7 ISBN Medium  
  Area Expedition Conference  
  Notes Approved yes  
  Call Number Serial 8448  
Permanent link to this record
 

 
Author David Grémillet isbn  openurl
  Title The Ocean's Whistleblower: The Remarkable Life and Work of Daniel Pauly Type Book
  Year 2021 Publication Greystone books ltd. Abbreviated Journal  
  Volume Issue Pages 349p  
  Keywords  
  Abstract “[Daniel Pauly] is an iconoclastic fisheries scientist ... who is so decidedly global in his life and outlook that he is nearly a man without a country.”—NEW YORK TIMES “Daniel Pauly is a friend whose work has inspired me for years.”—TED DANSONDaniel Pauly is a living legend in the world of marine biology. He coined the influential term “shifting baselines,” in which knowledge of environmental disaster fades over time, leading to a misguided understanding of our world. He blew the whistle on the global fishing industry, alerting the public to the devastation of overfishing. And he developed data-driven research methods that led to groundbreaking discoveries. Daniel Pauly is also a man whose life was shaped by struggle. Born after the Second World War to a white French woman and Black American GI in Paris, Pauly’s childhood has been described as Dickensian. His father left before he was born and his mother, whose family did not accept her and her mixed-race son, fell prey to a manipulative Swiss couple who abducted Pauly under murky circumstances. He was taken to Switzerland, where he was treated cruelly as the couple’s servant.  Pauly escaped to Germany to attend university and, as a young man, travelled to the United States during the 1969 civil rights movement, where he met his father’s family and experienced a political and racial reawakening. From there, he went on to have one of the most decorated careers in the field of marine biology. The Ocean’s Whistleblower “weaves together the challenges of marine research with an astonishing coming-of-age story” (Andrew Sharpless, Oceana) and is told through interviews with colleagues, friends, and Pauly himself. A brilliant book about a brilliant man, The Ocean’s Whistleblower finally profiles one of the most influential scientists of our time.  
  Programme (up) 388  
  Campaign  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN 978-1-77164-754-0 Medium  
  Area Expedition Conference  
  Notes Approved yes  
  Call Number Serial 8482  
Permanent link to this record
 

 
Author G. J. Sutton, C. A. Bost, A. Z. Kouzani, S. D. Adams, K. Mitchell, J. P. Y. Arnould doi  openurl
  Title Fine-scale foraging effort and efficiency of Macaroni penguins is influenced by prey type, patch density and temporal dynamics Type Journal
  Year 2021 Publication Marine Biology Abbreviated Journal  
  Volume 168 Issue 1 Pages 3  
  Keywords  
  Abstract Difficulties quantifying in situ prey patch quality have limited our understanding of how marine predators respond to variation within and between patches, and throughout their foraging range. In the present study, animal-borne video, GPS, accelerometer and dive behaviour data loggers were used to investigate the fine-scale foraging behaviour of Macaroni penguins (Eudyptes chrysolophus) in response to prey type, patch density and temporal variation in diving behaviour. Individuals mainly dived during the day and utilised two strategies, targeting different prey types. Subantarctic krill (Euphausia vallentini) were consumed during deep dives, while small soft-bodied fish were captured on shallow dives or during the ascent phase of deep dives. Despite breeding in large colonies individuals seemed to be solitary foragers and did not engage with conspecifics in coordinated behaviour as seen in other group foraging penguin species. This potentially reflects the high abundance and low manoeuvrability of krill. Video data were used to validate prey capture signals in accelerometer data and a Support Vector Machine learning algorithm was developed to identify prey captures that occurred throughout the entire foraging trip. Prey capture rates indicated that Macaroni penguins continued to forage beyond the optimal give up time. However, bout-scale analysis revealed individuals terminated diving behaviour for reasons other than patch quality. These findings indicate that individuals make complex foraging decisions in relation to their proximate environment over multiple spatio-temporal scales.  
  Programme (up) 394  
  Campaign  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1432-1793 ISBN Medium  
  Area Expedition Conference  
  Notes Approved yes  
  Call Number Serial 2037  
Permanent link to this record
 

 
Author Tomoko Narazaki, Itsumi Nakamura, Kagari Aoki, Takashi Iwata, Kozue Shiomi, Paolo Luschi, Hiroyuki Suganuma, Carl G. Meyer, Rui Matsumoto, Charles A. Bost, Yves Handrich, Masao Amano, Ryosuke Okamoto, Kyoichi Mori, Stéphane Ciccione, Jérôme Bourjea, Katsufumi Sato doi  openurl
  Title Similar circling movements observed across marine megafauna taxa Type Journal
  Year 2021 Publication iScience Abbreviated Journal  
  Volume 24 Issue 4 Pages 102221  
  Keywords Animals Biological Sciences Ecology Ethology Zoology  
  Abstract Advances in biologging technology have enabled 3D dead-reckoning reconstruction of marine animal movements at spatiotemporal scales of meters and seconds. Examining high-resolution 3D movements of sharks (Galeocerdo cuvier, N = 4; Rhincodon typus, N = 1), sea turtles (Chelonia mydas, N = 3), penguins (Aptenodytes patagonicus, N = 6), and marine mammals (Arctocephalus gazella, N = 4; Ziphius cavirostris, N = 1), we report the discovery of circling events where animals consecutively circled more than twice at relatively constant angular speeds. Similar circling behaviors were observed across a wide variety of marine megafauna, suggesting these behaviors might serve several similar purposes across taxa including foraging, social interactions, and navigation.  
  Programme (up) 394  
  Campaign  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2589-0042 ISBN Medium  
  Area Expedition Conference  
  Notes Approved yes  
  Call Number Serial 8095  
Permanent link to this record
 

 
Author F. Bultelle, I. Boutet, S. Devin, F. Caza, Y. St-Pierre, R. Péden, P. Brousseau, P. Chan, D. Vaudry, F. Le Foll, M. Fournier, M. Auffret, B. Rocher doi  openurl
  Title Molecular response of a sub-antarctic population of the blue mussel (Mytilus edulis platensis) to a moderate thermal stress Type Journal
  Year 2021 Publication Marine Environmental Research Abbreviated Journal  
  Volume 169 Issue Pages 105393  
  Keywords 2DE Abiotic stress Biomonitoring Gills Indicator species Kerguelen island Mytilus sp. qRT-PCR Temperature  
  Abstract The Kerguelen Islands (49°26′S, 69°50′E) represent a unique environment due to their geographical isolation, which protects them from anthropogenic pollution. The ability of the endemic mussel, part of the Mytilus complex, to cope with moderate heat stress was explored using omic tools. Transcripts involved in six major metabolic functions were selected and the qRT-PCR data indicated mainly changes in aerobic and anaerobic energy metabolism and stress response. Proteomic comparisons revealed a typical stress response pattern with cytoskeleton modifications and elements suggesting increased energy metabolism. Results also suggest conservation of protein homeostasis by the long-lasting presence of HSP while a general decrease in transcription is observed. The overall findings are consistent with an adaptive response to moderate stresses in mussels in good physiological condition, i.e. living in a low-impact site, and with the literature concerning this model species. Therefore, local blue mussels could be advantageously integrated into biomonitoring strategies, especially in the context of Global Change.  
  Programme (up) 409  
  Campaign  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0141-1136 ISBN Medium  
  Area Expedition Conference  
  Notes Approved yes  
  Call Number Serial 8256  
Permanent link to this record
 

 
Author Andreas Richter, Alexey A. Ekaykin, Matthias O. Willen, Vladimir Ya. Lipenkov, Andreas Groh, Sergey V. Popov, Mirko Scheinert, Martin Horwath, Reinhard Dietrich doi  openurl
  Title Surface Mass Balance Models Vs. Stake Observations: A Comparison in the Lake Vostok Region, Central East Antarctica Type Journal
  Year 2021 Publication Frontiers in Earth Science Abbreviated Journal  
  Volume 9 Issue Pages 388  
  Keywords  
  Abstract The surface mass balance (SMB) is very low over the vast East Antarctic Plateau, for example in the Vostok region, where the mean SMB is on the order of 20–35 kg m-2 a-1. The observation and modeling of spatio-temporal SMB variations are equally challenging in this environment. Stake measurements carried out in the Vostok region provide SMB observations over half a century (1970–2019). This unique data set is compared with SMB estimations of the regional climate models RACMO2.3p2 (RACMO) and MAR3.11 (MAR). We focus on the SMB variations over time scales from months to decades. The comparison requires a rigorous assessment of the uncertainty in the stake observations and the spatial scale dependence of the temporal SMB variations. Our results show that RACMO estimates of annual and multi-year SMB agree well with the observations. The regression slope between modelled and observed temporal variations is close to 1.0 for this model. SMB simulations by MAR are affected by a positive bias which amounts to 6 kg m-2 a-1 at Vostok station and 2 kg m-2 a-1 along two stake profiles between Lake Vostok and Ridge B. None of the models is capable to reproduce the seasonal distributions of SMB and precipitation. Model SMB estimates are used in assessing the ice-mass balance and sea-level contribution of the Antarctic Ice Sheet by the input-output method. Our results provide insights into the uncertainty contribution of the SMB models to such assessments.  
  Programme (up) 411  
  Campaign  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2296-6463 ISBN Medium  
  Area Expedition Conference  
  Notes Approved yes  
  Call Number Serial 8030  
Permanent link to this record
 

 
Author Jonathan D. Wille, Vincent Favier, Irina V. Gorodetskaya, Cécile Agosta, Christoph Kittel, Jai Chowdhry Beeman, Nicolas C. Jourdain, Jan T. M. Lenaerts, Francis Codron doi  openurl
  Title Antarctic Atmospheric River Climatology and Precipitation Impacts Type Journal
  Year 2021 Publication Journal of Geophysical Research: Atmospheres Abbreviated Journal  
  Volume 126 Issue 8 Pages e2020JD033788  
  Keywords Antarctica atmospheric rivers climatology meteorology  
  Abstract The Antarctic ice sheet (AIS) is sensitive to short-term extreme meteorological events that can leave long-term impacts on the continent's surface mass balance (SMB). We investigate the impacts of atmospheric rivers (ARs) on the AIS precipitation budget using an AR detection algorithm and a regional climate model (Modèle Atmosphérique Régional) from 1980 to 2018. While ARs and their associated extreme vapor transport are relatively rare events over Antarctic coastal regions (∼3 days per year), they have a significant impact on the precipitation climatology. ARs are responsible for at least 10% of total accumulated snowfall across East Antarctica (localized areas reaching 20%) and a majority of extreme precipitation events. Trends in AR annual frequency since 1980 are observed across parts of AIS, most notably an increasing trend in Dronning Maud Land; however, interannual variability in AR frequency is much larger. This AR behavior appears to drive a significant portion of annual snowfall trends across East Antarctica, while controlling the interannual variability of precipitation across most of the AIS. AR landfalls are most likely when the circumpolar jet is highly amplified during blocking conditions in the Southern Ocean. There is a fingerprint of the Southern Annular Mode (SAM) on AR variability in West Antarctica with SAM+ (SAM−) favoring increased AR frequency in the Antarctic Peninsula (Amundsen-Ross Sea coastline). Given the relatively large influence ARs have on precipitation across the continent, it is advantageous for future studies of moisture transport to Antarctica to consider an AR framework especially when considering future SMB changes.  
  Programme (up) 411  
  Campaign  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2169-8996 ISBN Medium  
  Area Expedition Conference  
  Notes Approved yes  
  Call Number Serial 8327  
Permanent link to this record
 

 
Author Charles Amory, Christoph Kittel, Louis Le Toumelin, Cécile Agosta, Alison Delhasse, Vincent Favier, Xavier Fettweis doi  openurl
  Title Performance of MAR (v3.11) in simulating the drifting-snow climate and surface mass balance of Adélie Land, East Antarctica Type Journal
  Year 2021 Publication Geoscientific Model Development Abbreviated Journal  
  Volume 14 Issue 6 Pages 3487-3510  
  Keywords  
  Abstract

Abstract. Drifting snow, or the wind-driven transport of snow particles originating from clouds and the surface below and above 2 m above ground and their concurrent sublimation, is a poorly documented process on the Antarctic ice sheet, which is inherently lacking in most climate models. Since drifting snow mostly results from erosion of surface particles, a comprehensive evaluation of this process in climate models requires a concurrent assessment of simulated drifting-snow transport and the surface mass balance (SMB). In this paper a new version of the drifting-snow scheme currently embedded in the regional climate model MAR (v3.11) is extensively described. Several important modifications relative to previous version have been implemented and include notably a parameterization for drifting-snow compaction of the uppermost snowpack layer, differentiated snow density at deposition between precipitation and drifting snow, and a rewrite of the threshold friction velocity above which snow erosion initiates. Model results at high resolution (10 km) over Adélie Land, East Antarctica, for the period 2004–2018 are presented and evaluated against available near-surface meteorological observations at half-hourly resolution and annual SMB estimates. The evaluation demonstrates that MAR resolves the local drifting-snow frequency and transport up to the scale of the drifting-snow event and captures the resulting observed climate and SMB variability, suggesting that this model version can be used for continent-wide applications.

 
  Programme (up) 411  
  Campaign  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1991-959X ISBN Medium  
  Area Expedition Conference  
  Notes Approved yes  
  Call Number Serial 8428  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print