Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Ricaud, Philippe doi  openurl
  Title Variabilités de la vapeur d’eau et de la température troposphérique mesurées par le radiomètre micro-onde HAMSTRAD au Dôme C, Antarctique. Partie II : Résultats scientifiques Type Journal Article
  Year 2014 Publication La Météorologie Abbreviated Journal  
  Volume 85 Issue Pages 35-46  
  Keywords  
  Abstract The H2O Antarctica Microwave Stratospheric and Tropospheric Radiometers (HAMSTRAD) program aims to develop a ground-based microwave radiometer to measure tropospheric water vapor and temperature vertical profiles above the Dome C station, Concordia, Antarctica. The present article deals with the scientific results obtained with the vertical profiles of H2O and temperature from 0 to 10 km above the station coupled with other data sets (in situ, satellite, radiosonde, analyses and mesoscale model). The short-term variability (diurnal variation) has been studied in the lowermost troposphere according to the season to highlight the time evolution of the different sub-layers within the atmospheric boundary layer. Considering back-trajectory studies, the intra-seasonal variability of H2O and temperature in the troposphere comes mainly from the origin of air masses reaching the Dome C station, oceanic or continental, producing a high correlation rate between H2O and temperature. In a case study, a mesoscale model tends to calculate a wetter and warmer atmosphere than observations in the atmospheric boundary layer.  
  Programme (down) 910  
  Campaign  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0026-1181 ISBN Medium  
  Area Expedition Conference  
  Notes Approved yes  
  Call Number Serial 4965  
Permanent link to this record
 

 
Author Ricaud, P., P. Grigioni, R. Zbinden, J.-L. Attié, L. Genoni, A. Galeandro, L. Moggio, S. Montaguti, I. Petenko & P. Legovini doi  openurl
  Title Review of tropospheric temperature, absolute humidity and integrated water vapour from the HAMSTRAD radiometer installed at Dome C, Antarctica, 2009–14 Type Journal Article
  Year 2015 Publication Antarctic Science Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract The HAMSTRAD (H2O Antarctica Microwave Stratospheric and Tropospheric Radiometers) instrument is a microwave radiometer installed at Dome C (Antarctica, 75°06'S, 123°21'E, 3233 m amsl) dedicated to the tropospheric measurements of temperature, absolute humidity and integrated water vapour (IWV). The aim of the present paper is to review the entire HAMSTRAD data set from 2009 to 2014 with a 7-minute integration time from 0 to 10 km by comparison with coincident radiosondes launched at 12:00 UTC at Dome C. Based upon an extensive evaluation of biases and time correlation coefficients (r), we can state: 1) IWV is of excellent quality (r > 0.98) and can be used without retrieving significant bias, 2) temperature is suitable for scientific analyses over the range 0-10 km with a high time correlation with radiosondes (r > 0.80) and 3) absolute humidity is suitable for scientific analyses in the range 0-4 km with a moderate time correlation against radiosondes (r > 0.70). The vertical distribution of temperature (0-10 km) and absolute humidity (0-4 km) is subject to biases that need to be removed if the analyses require the use of vertical profiling. The HAMSTRAD data set is given in open access to the scientific community.  
  Programme (down) 910  
  Campaign  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0954-1020 ISBN Medium  
  Area Expedition Conference  
  Notes Approved yes  
  Call Number Serial 6241  
Permanent link to this record
 

 
Author Ricaud, P., E. Bazile, M. del Guasta, C. Lanconelli, P. Grigioni, and A. Mahjoub doi  openurl
  Title Genesis of Diamond Dust and Thick Cloud Episodes observed above Dome C, Antarctica Type Journal Article
  Year 2016 Publication ATMOSPHERIC CHEMISTRY AND PHYSICS Abbreviated Journal  
  Volume 2016 Issue Pages 1-54  
  Keywords  
  Abstract From 15 March to 8 April 2011 and from 4 to 5 March 2013, the atmosphere above Dome C (Concordia station, Antarctica, 75°06' S, 123°21' E, 3233 m amsl) has been probed by several instruments and model to study episodes of thick cloud and diamond dust (cloud constituted of suspended ice crystals). 1) A ground-based microwave radiometer (HAMSTRAD, H2O Antarctica Microwave Stratospheric and Tropospheric Radiometers) installed at Dome C that provided vertical profiles of tropospheric temperature and absolute humidity to calculate Integrated Water Vapour (IWV). 2) Daily radiosoundings launched at 12:00 UTC at Dome C. 3) A tropospheric aerosol Lidar that provides aerosol depolarization ratio along the vertical at Dome C. 4) Down- and upward short- and longwave radiations as provided by the Baseline Surface Radiation Network (BSRN) facilities. 5) Space-borne aerosol depolarization ratio from the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) Lidar aboard the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) platform along orbits close to the Dome C station. The time evolution of the atmosphere has also been evaluated by considering the outputs from the meso-scale AROME and the global-scale ARPEGE meteorological models. Two distinct periods are highlighted by all the datasets: the warm and wet periods (24–26 March 2011 and 4 March 2013) and the cold and dry periods (5 April 2011 and 5 March 2013). Combining radiation and active measurements of aerosols with nebulosity calculations, a thick cloud is detected during the warm and wet periods with high depolarization ratios (greater than 30 %) from the surface to 5–7 km altitude associated with precipitation of ice particles and the presence of a supercooled liquid water (depolarization of about 10 %) cloud. During the cold and dry periods, high depolarization ratios (greater than 30 %) to a maximum altitude of 100–500 m are measured suggesting that the cloud is constituted of ice crystals with no trace of precipitation. These ice crystals in suspension in the air are named diamond dust. Considering 5-day back trajectories from Dome C and global distributions of IWV over the Antarctic show that the thick-cloud episode is attributed to air masses with an oceanic origin whilst the diamond dust episode is attributed to air masses with continental origins. This is consistent with ARPEGE temperature and water vapour tendency favouring predominantly advection processes including microphysical processes for water vapour.  
  Programme (down) 910  
  Campaign  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1680-7316 ISBN Medium  
  Area Expedition Conference  
  Notes Approved yes  
  Call Number Serial 6445  
Permanent link to this record
 

 
Author Angot, H., Magand, O., Helmig, D., Ricaud, P., Quennehen, B., Gallée, H., Del Guasta, M., Sprovieri, F., Pirrone, N., Savarino, J., and Dommergue, A. doi  openurl
  Title New insights into the atmospheric mercury cycling in central Antarctica and implications on a continental scale Type Journal Article
  Year 2016 Publication ATMOSPHERIC CHEMISTRY AND PHYSICS Abbreviated Journal  
  Volume 16 Issue 13 Pages 8249-8264  
  Keywords  
  Abstract Under the framework of the GMOS project (Global Mercury Observation System) atmospheric mercury monitoring has been implemented at Concordia Station on the high-altitude Antarctic plateau (75°06′ S, 123°20′ E, 3220 m above sea level). We report here the first year-round measurements of gaseous elemental mercury (Hg(0)) in the atmosphere and in snowpack interstitial air on the East Antarctic ice sheet. This unique data set shows evidence of an intense oxidation of atmospheric Hg(0) in summer (24-hour daylight) due to the high oxidative capacity of the Antarctic plateau atmosphere in this period of the year. Summertime Hg(0) concentrations exhibited a pronounced daily cycle in ambient air with maximal concentrations around midday. Photochemical reactions and chemical exchange at the air–snow interface were prominent, highlighting the role of the snowpack on the atmospheric mercury cycle. Our observations reveal a 20 to 30 % decrease of atmospheric Hg(0) concentrations from May to mid-August (winter, 24 h darkness). This phenomenon has not been reported elsewhere and possibly results from the dry deposition of Hg(0) onto the snowpack. We also reveal the occurrence of multi-day to weeklong atmospheric Hg(0) depletion events in summer, not associated with depletions of ozone, and likely due to a stagnation of air masses above the plateau triggering an accumulation of oxidants within the shallow boundary layer. Our observations suggest that the inland atmospheric reservoir is depleted in Hg(0) in summer. Due to katabatic winds flowing out from the Antarctic plateau down the steep vertical drops along the coast and according to observations at coastal Antarctic stations, the striking reactivity observed on the plateau most likely influences the cycle of atmospheric mercury on a continental scale.  
  Programme (down) 910  
  Campaign  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1680-7316 ISBN Medium  
  Area Expedition Conference  
  Notes Approved yes  
  Call Number Serial 6446  
Permanent link to this record
 

 
Author P. Ricaud, E. Bazile, M. del Guasta, C. Lanconelli, P. Grigioni, A. Mahjoub doi  isbn
openurl 
  Title Genesis of diamond dust, ice fog and thick cloud episodes observed and modelled above Dome C, Antarctica Type Journal
  Year 2017 Publication Atmos. Chem. Phys. Abbreviated Journal  
  Volume 17 Issue 8 Pages 5221-5237  
  Keywords  
  Abstract Episodes of thick cloud and diamond dust/ice fog were observed during 15 March to 8 April 2011 and 4 to 5 March 2013 in the atmosphere above Dome C (Concordia station, Antarctica; 75°06′ S, 123°21′ E; 3233 m a.m.s.l.). The objectives of the paper are mainly to investigate the processes that cause these episodes based on observations and to verify whether operational models can evaluate them. The measurements were obtained from the following instruments: (1) a ground-based microwave radiometer (HAMSTRAD, H2O Antarctica Microwave Stratospheric and Tropospheric Radiometers) installed at Dome C that provided vertical profiles of tropospheric temperature and absolute humidity every 7 min; (2) daily radiosoundings launched at 12:00 UTC at Dome C; (3) a tropospheric aerosol lidar that provides aerosol depolarization ratio along the vertical at Dome C; (4) down- and upward short- and long-wave radiations as provided by the Baseline Surface Radiation Network (BSRN) facilities; (5) an ICE-CAMERA to detect at an hourly rate the size of the ice crystal grains deposited at the surface of the camera; and (6) space-borne aerosol depolarization ratio from the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) lidar aboard the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) platform along orbits close to the Dome C station. The time evolution of the atmosphere has also been evaluated by considering the outputs from the mesoscale AROME and the global-scale ARPEGE meteorological models. Thick clouds are detected during the warm and wet periods (24–26 March 2011 and 4 March 2013) with high depolarization ratios (greater than 30 %) from the surface to 5–7 km above the ground associated with precipitation of ice particles and the presence of a supercooled liquid water (depolarization less than 10 %) clouds. Diamond dust and/or ice fog are detected during the cold and dry periods (5 April 2011 and 5 March 2013) with high depolarization ratios (greater than 30 %) in the planetary boundary layer to a maximum altitude of 100–300 m above the ground with little trace of precipitation. Considering 5-day back trajectories, we show that the thick cloud episodes are attributed to air masses with an oceanic origin whilst the diamond dust/ice fog episodes are attributed to air masses with continental origins. Although operational models can reproduce thick cloud episodes in the free troposphere, they cannot evaluate the diamond dust/ice fog episodes in the planetary boundary layer because they require to use more sophisticated cloud and aerosol microphysics schemes.  
  Programme (down) 910  
  Campaign  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1680-7324 ISBN 1680-7324 Medium  
  Area Expedition Conference  
  Notes Approved yes  
  Call Number Serial 6777  
Permanent link to this record
 

 
Author Philippe Ricaud, Massimo Del Guasta, Eric Bazile, Niramson Azouz, Angelo Lupi, Pierre Durand, Jean-Luc Attié, Dana Veron, Vincent Guidard, Paolo Grigioni doi  openurl
  Title Supercooled liquid water cloud observed, analysed, and modelled at the top of the planetary boundary layer above Dome C, Antarctica Type Journal
  Year 2020 Publication Atmospheric Chemistry and Physics Abbreviated Journal  
  Volume 20 Issue 7 Pages 4167-4191  
  Keywords  
  Abstract

Abstract. A comprehensive analysis of the water budget over the Dome C (Concordia, Antarctica) station has been performed during the austral summer 2018–2019 as part of the Year of Polar Prediction (YOPP) international campaign. Thin (∼100 m deep) supercooled liquid water (SLW) clouds have been detected and analysed using remotely sensed observations at the station (tropospheric depolarization lidar, the H2O Antarctica Microwave Stratospheric and Tropospheric Radiometer (HAMSTRAD), net surface radiation from the Baseline Surface Radiation Network (BSRN)), radiosondes, and satellite observations (CALIOP, Cloud-Aerosol LIdar with Orthogonal Polarization/CALIPSO, Cloud Aerosol Lidar and Infrared Pathfinder Satellite Observations) combined with a specific configuration of the numerical weather prediction model: ARPEGE-SH (Action de Recherche Petite Echelle Grande Echelle – Southern Hemisphere). The analysis shows that SLW clouds were present from November to March, with the greatest frequency occurring in December and January when ∼50 % of the days in summer time exhibited SLW clouds for at least 1 h. Two case studies are used to illustrate this phenomenon. On 24 December 2018, the atmospheric planetary boundary layer (PBL) evolved following a typical diurnal variation, which is to say with a warm and dry mixing layer at local noon thicker than the cold and dry stable layer at local midnight. Our study showed that the SLW clouds were observed at Dome C within the entrainment and the capping inversion zones at the top of the PBL. ARPEGE-SH was not able to correctly estimate the ratio between liquid and solid water inside the clouds with the liquid water path (LWP) strongly underestimated by a factor of 1000 compared to observations. The lack of simulated SLW in the model impacted the net surface radiation that was 20–30 W m−2 higher in the BSRN observations than in the ARPEGE-SH calculations, mainly attributable to the BSRN longwave downward surface radiation being 50 W m−2 greater than that of ARPEGE-SH. The second case study took place on 20 December 2018, when a warm and wet episode impacted the PBL with no clear diurnal cycle of the PBL top. SLW cloud appearance within the entrainment and capping inversion zones coincided with the warm and wet event. The amount of liquid water measured by HAMSTRAD was ∼20 times greater in this perturbed PBL than in the typical PBL. Since ARPEGE-SH was not able to accurately reproduce these SLW clouds, the discrepancy between the observed and calculated net surface radiation was even greater than in the typical PBL case, reaching +50 W m−2, mainly attributable to the downwelling longwave surface radiation from BSRN being 100 W m−2 greater than that of ARPEGE-SH. The model was then run with a new partition function favouring liquid water for temperatures below −20 down to −40C. In this test mode, ARPEGE-SH has been able to generate SLW clouds with modelled LWP and net surface radiation consistent with observations during the typical case, whereas, during the perturbed case, the modelled LWP was 10 times less than the observations and the modelled net surface radiation remained lower than the observations by ∼50 W m−2. Accurately modelling the presence of SLW clouds appears crucial to correctly simulate the surface energy budget over the Antarctic Plateau.

 
  Programme (down) 910  
  Campaign  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1680-7316 ISBN Medium  
  Area Expedition Conference  
  Notes Approved yes  
  Call Number Serial 7642  
Permanent link to this record
 

 
Author Philippe Ricaud, Paolo Grigioni, Romain Roehrig, Pierre Durand, Dana E. Veron file  doi
openurl 
  Title Trends in Atmospheric Humidity and Temperature above Dome C, Antarctica Evaluated from Observations and Reanalyses Type Journal
  Year 2020 Publication Atmosphere Abbreviated Journal  
  Volume 11 Issue 8 Pages 836  
  Keywords meteorological reanalyses microwave radiometer precipitable water radiosondes SAM index temperature trends  
  Abstract The time evolution of humidity and temperature above Dome C (Antarctica) has been investigated by considering data from (1) meteorological radiosondes (2005–2017), (2) the microwave radiometer HAMSTRAD (2012–2017), (3) four modern meteorological reanalyses (1980–2017) and (4) the southern annular mode (SAM) index (1980–2017). From these observations (2005–2017), a significant moistening trend (0.08 ± 0.06 kg m−2 dec−1) is associated with a significant warming trend (1.08 ± 0.55 K dec−1) in summer. Conversely, a significant drying trend of −0.04 ± 0.03 kg m−2 dec−1 (−0.05 ± 0.03 kg m−2 dec−1) is associated with a significant cooling trend of −2.4 ± 1.2 K dec−1 (−5.1 ± 2.0 K dec−1) in autumn (winter), with no significant trends in the spring. We demonstrate that 1) the trends identified in the radiosondes (2005–2017) are also present in the reanalyses and 2) the multidecadal variability of integrated water vapor and near-surface temperature (1980–2017) is strongly influenced by variability in the SAM index for all seasons but spring. Our study suggests that the decadal trends observed in humidity and near-surface temperature at Dome C (2005–2017) reflect the multidecadal variability of the atmosphere, and are not indicative of long-term trends that may be related to global climate change.  
  Programme (down) 910  
  Campaign  
  Address  
  Corporate Author Thesis Bachelor's thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2073-4433 ISBN Medium  
  Area Expedition Conference  
  Notes Approved yes  
  Call Number Serial 7838  
Permanent link to this record
 

 
Author Ricaud, P., Del Guasta M., Bazile E., Azouz N., Lupi A., Durand P., Attié J.-L., Veron D., Guidard V., Grigioni P. openurl 
  Title Supercooled Liquid Water Cloud observed, analysed and modelled at the Top of the Planetary Boundary Layer above Dome C Type Communication
  Year 2020 Publication Antarctica, SCAR, Visio, Hobart, Australia, August 2020 Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract  
  Programme (down) 910  
  Campaign  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved yes  
  Call Number Serial 7839  
Permanent link to this record
 

 
Author Philippe Ricaud, Paolo Grigioni, Romain Roehrig, Pierre Durand, Dana E. Veron openurl 
  Title Trends in Atmospheric Humidity and Temperature above Dome C Type Communication
  Year 2020 Publication Antarctica Evaluated from Observations and Reanalyses, SCAR, Visio, Hobart, Australia, August 2020. Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract  
  Programme (down) 910  
  Campaign  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved yes  
  Call Number Serial 7840  
Permanent link to this record
 

 
Author Dana E. Veron, Christophe Genthon, Massimo del Guasta, Philippe Ricaud, Paolo Grigioni, Eric Bazile, Hubert Gall�e openurl 
  Title Observations and simulation of boundary layer clouds and fog over Dome C, Antarctica during the YOPP Type Peer-reviewed symposium
  Year 2019 Publication AGU Fall Meeting 2019 Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract Recent studies of the atmospheric boundary layer at Dome C, Antarctica indicate...  
  Programme (down) 910  
  Campaign  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved yes  
  Call Number Serial 7841  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print