Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Akers P., Savarino, J., Caillon, N. openurl 
  Title Reconstructing Antarctic snow accumulation using nitrogen isotopes of nitrate Type Communication
  Year 2021 Publication EGU General Assembly, 19-30 April 2021 Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract  
  Programme (up) 1177  
  Campaign  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved yes  
  Call Number Serial 7866  
Permanent link to this record
 

 
Author Barbero A., Grilli R., Blouzon C., Ahmed S., Thomas J.L., Frey M., Huang Y., Caillon N., Savarino J. openurl 
  Title Innovative approach for new estimation of NOx snow-source on the Antarctic Plateau Type Communication
  Year 2021 Publication EGU General Assembly, 19-30 April 2021 Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract  
  Programme (up) 1177  
  Campaign  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved yes  
  Call Number Serial 7867  
Permanent link to this record
 

 
Author Ishino S., Hattori S., Savarino J., Jourdain B., Legrand M., Preunkert S., Alexander B., Yoshida N., Huang J. file  openurl
  Title Regional characteristics of atmospheric sulfate formation in East Antarctica imprinted on 17O-excess signature Type Book Chapter
  Year 2021 Publication EGU General Assembly, 19-30 April 2021 Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract  
  Programme (up) 1177  
  Campaign  
  Address  
  Corporate Author Thesis Bachelor's thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved yes  
  Call Number Serial 7869  
Permanent link to this record
 

 
Author Zhuang Jiang, Becky Alexander, Joel Savarino, Joseph Erbland, Lei Geng doi  openurl
  Title Impacts of the photo-driven post-depositional processing on snow nitrate and its isotopes at Summit, Greenland: a model-based study Type Journal
  Year 2021 Publication The Cryosphere Abbreviated Journal  
  Volume 15 Issue 9 Pages 4207-4220  
  Keywords  
  Abstract Abstract. Atmospheric Information Embedded In Ice-core Nitrate Is Disturbed By Post-depositional Processing. Here We Used A Layered Snow Photochemical Column Model To Explicitly Investigate The Effects Of Post-depositional Processing On Snow Nitrate And Its Isotopes (δ15n And Δ17o) At Summit, Greenland, Where Post-depositional Processing Was Thought To Be Minimal Due To The High Snow Accumulation Rate. We Found Significant Redistribution Of Nitrate In The Upper Snowpack Through Photolysis, And Up To 21 % Of Nitrate Was Lost And/or Redistributed After Deposition. The Model Indicates Post-depositional Processing Can Reproduce Much Of The Observed δ15n Seasonality, While Seasonal Variations In δ15n Of Primary Nitrate Are Needed To Reconcile The Timing Of The Lowest Seasonal δ15n. In Contrast, Post-depositional Processing Can Only Induce Less Than 2.1 ‰ Seasonal Δ17o Change, Much Smaller Than The Observation (9 ‰) That Is Ultimately Determined By Seasonal Differences In Nitrate Formation Pathway. Despite Significant Redistribution Of Snow Nitrate In The Photic Zone And The Associated Effects On δ15n Seasonality, The Net Annual Effect Of Post-depositional Processing Is Relatively Small, Suggesting Preservation Of Atmospheric Signals At The Annual Scale Under The Present Summit Conditions. But At Longer Timescales When Large Changes In Snow Accumulation Rate Occur This Post-depositional Processing Could Become A Major Driver Of The δ15n Variability In Ice-core Nitrate.  
  Programme (up) 1177  
  Campaign  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1994-0416 ISBN Medium  
  Area Expedition Conference  
  Notes Approved yes  
  Call Number Serial 8375  
Permanent link to this record
 

 
Author A. Barbero, J. Savarino, R. Grilli, C. Blouzon, G. Picard, M. M. Frey, Y. Huang, N. Caillon doi  openurl
  Title New Estimation of the NOx Snow-Source on the Antarctic Plateau Type Journal
  Year 2021 Publication Journal of Geophysical Research: Atmospheres Abbreviated Journal  
  Volume 126 Issue 20 Pages e2021JD035062  
  Keywords Antarctic Plateau flux chamber nitrate photolysis snowpack emissions  
  Abstract To fully decipher the role of nitrate photolysis on the atmospheric oxidative capacity in snow-covered regions, NOx flux must be determined with more precision than existing estimates. Here, we introduce a method based on dynamic flux chamber measurements for evaluating the NOx production by photolysis of snowpack nitrate in Antarctica. Flux chamber experiments were conducted for the first time in Antarctica, at the French-Italian station Concordia, Dome C (75°06'S, 123°20’E, 3233 m a.s.l) during the 2019–2020 summer campaign. Measurements were gathered with several snow samples of different ages ranging from newly formed drifted snow to 6-year-old firn. Contrary to existing literature expectations, the daily average photolysis rate coefficient, , did not significantly vary between differently aged snow samples, suggesting that the photolabile nitrate in snow behaves as a single-family source with common photochemical properties, where a = (2.37 0.35) × 10−8 s−1 (1) has been calculated from December 10th 2019 to January 7th 2020. At Dome C summer daily average NOx flux, , based on measured NOx production rates was estimated to be (4.3 1.2) × 108 molecules cm−2 s−1, which is 1.5–7 times less than the net NOx flux observed previously above snow at Dome C using the gradient flux method. Using these results, we extrapolated an annual continental snow sourced NOx budget of 0.017 0.003 TgN y−1, 2 times the nitrogen budget, (N-budget), of the stratospheric denitrification previously estimated for Antarctica. These quantifications of nitrate photolysis using flux chamber experiments provide a road-map toward a new parameterization of the product that can improve future global and regional models of atmospheric chemistry.  
  Programme (up) 1177  
  Campaign  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2169-8996 ISBN Medium  
  Area Expedition Conference  
  Notes Approved yes  
  Call Number Serial 8393  
Permanent link to this record
 

 
Author S. Ishino, S. Hattori, M. Legrand, Q. Chen, B. Alexander, J. Shao, J. Huang, L. Jaeglé, B. Jourdain, S. Preunkert, A. Yamada, N. Yoshida, J. Savarino doi  openurl
  Title Regional Characteristics of Atmospheric Sulfate Formation in East Antarctica Imprinted on 17O-Excess Signature Type Journal
  Year 2021 Publication Journal of Geophysical Research: Atmospheres Abbreviated Journal  
  Volume 126 Issue 6 Pages e2020JD033583  
  Keywords aerosols Antarctica isotope methanesulfonate sulfate  
  Abstract 17O-excess (Δ17O = δ17O − 0.52 × δ18O) of sulfate trapped in Antarctic ice cores has been proposed as a potential tool for assessing past oxidant chemistry, while insufficient understanding of atmospheric sulfate formation around Antarctica hampers its interpretation. To probe influences of regional specific chemistry, we compared year-round observations of Δ17O of non-sea-salt sulfate in aerosols (Δ17O(SO42−)nss) at Dome C and Dumont d'Urville, inland and coastal sites in East Antarctica, throughout the year 2011. Although Δ17O(SO42−)nss at both sites showed consistent seasonality with summer minima (∼1.0‰) and winter maxima (∼2.5‰) owing to sunlight-driven changes in the relative importance of O3 oxidation to OH and H2O2 oxidation, significant intersite differences were observed in austral spring–summer and autumn. The cooccurrence of higher Δ17O(SO42−)nss at inland (2.0‰ ± 0.1‰) than the coastal site (1.2‰ ± 0.1‰) and chemical destruction of methanesulfonate (MS–) in aerosols at inland during spring–summer (October–December), combined with the first estimated Δ17O(MS–) of ∼16‰, implies that MS– destruction produces sulfate with high Δ17O(SO42−)nss of ∼12‰. If contributing to the known postdepositional decrease of MS– in snow, this process should also cause a significant postdepositional increase in Δ17O(SO42−)nss over 1‰, that can reconcile the discrepancy between Δ17O(SO42−)nss in the atmosphere and ice. The higher Δ17O(SO42−)nss at the coastal site than inland during autumn (March–May) may be associated with oxidation process involving reactive bromine and/or sea-salt particles around the coastal region.  
  Programme (up) 1177  
  Campaign  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2169-8996 ISBN Medium  
  Area Expedition Conference  
  Notes Approved yes  
  Call Number Serial 8412  
Permanent link to this record
 

 
Author Steven Franke, Daniela Jansen, Sebastian Beyer, Niklas Neckel, Tobias Binder, John Paden, Olaf Eisen doi  openurl
  Title Complex Basal Conditions and Their Influence on Ice Flow at the Onset of the Northeast Greenland Ice Stream Type Journal
  Year 2021 Publication Journal of Geophysical Research: Earth Surface Abbreviated Journal  
  Volume 126 Issue 3 Pages e2020JF005689  
  Keywords basal roughness bed conditions Greenland Ice Sheet ice stream Northeast Greenland Ice Stream radio-echo sounding  
  Abstract Abstract The ice stream geometry and large ice surface velocities at the onset region of the Northeast Greenland Ice Stream (NEGIS) are not yet well reproduced by ice sheet models. The quantification of basal sliding and a parametrization of basal conditions remains a major gap. In this study, we assess the basal conditions of the onset region of the NEGIS in a systematic analysis of airborne ultra-wideband radar data. We evaluate basal roughness and basal return echoes in the context of the current ice stream geometry and ice surface velocity. We observe a change from a smooth to a rougher bed where the ice stream widens, and a distinct roughness anisotropy, indicating a preferred orientation of subglacial structures. In the upstream region, the excess ice mass flux through the shear margins is evacuated by ice flow acceleration and along-flow stretching of the ice. At the downstream part, the generally rougher bed topography correlates with a decrease in flow acceleration and lateral variations in ice surface velocity. Together with basal water routing pathways, this hints to two different zones in this part of the NEGIS: the upstream region collecting water, with a reduced basal traction, and downstream, where the ice stream is slowing down and is widening on a rougher bed, with a distribution of basal water toward the shear margins. Our findings support the hypothesis that the NEGIS is strongly interconnected to the subglacial water system in its onset region, but also to the subglacial substrate and morphology.  
  Programme (up) 1180  
  Campaign  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2169-9003 ISBN Medium  
  Area Expedition Conference  
  Notes Approved yes  
  Call Number Serial 7272  
Permanent link to this record
 

 
Author Rob Harcourt, Mark A. Hindell, Clive R. McMahon, Kimberly T. Goetz, Jean-Benoit Charrassin, Karine Heerah, Rachel Holser, Ian D. Jonsen, Michelle R. Shero, Xavier Hoenner, Rose Foster, Baukje Lenting, Esther Tarszisz, Matthew Harry Pinkerton doi  isbn
openurl 
  Title Regional Variation in Winter Foraging Strategies by Weddell Seals in Eastern Antarctica and the Ross Sea Type Journal
  Year 2021 Publication Frontiers in Marine Science Abbreviated Journal  
  Volume 8 Issue Pages  
  Keywords  
  Abstract The relative importance of intrinsic and extrinsic determinants of animal foraging is often difficult to quantify. The most southerly breeding mammal, the Weddell seal, remains in the Antarctic pack-ice year-round. We compared Weddell seals tagged at three geographically and hydrographically distinct locations in East Antarctica (Prydz Bay, Terre Adélie, and the Ross Sea) to quantify the role of individual variability and habitat structure in winter foraging behaviour. Most Weddell seals remained in relatively small areas close to the coast throughout the winter, but some dispersed widely. Individual utilisation distributions (UDi, a measure of the total area used by an individual seal) ranged from 125 to 20,825 km2. This variability was not due to size or sex but may be due to other intrinsic states for example reproductive condition or personality. The type of foraging (benthic vs. pelagic) varied from 56.6 ± 14.9% benthic dives in Prydz Bay through 42.1 ± 9.4% Terre Adélie to only 25.1 ± 8.7% in the Ross Sea reflecting regional hydrographic structure. The probability of benthic diving was less likely the deeper the ocean. Ocean topography was also influential at the population level; seals from Terre Adélie, with its relatively narrow continental shelf, had a core (50%) UD of only 200 km2, considerably smaller than the Ross Sea (1650 km2) and Prydz Bay (1700 km2). Sea ice concentration had little influence on the time the seals spent in shallow coastal waters, but in deeper offshore water they used areas of higher ice concentration. Marine Protected Areas (MPAs) in the Ross Sea encompass all the observed Weddell seal habitat, and future MPAs that include the Antarctic continental shelf are likely to effectively protect key Weddell seal habitat.  
  Programme (up) 1182  
  Campaign  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2296-7745 ISBN 2296-7745 Medium  
  Area Expedition Conference  
  Notes Approved yes  
  Call Number Serial 8609  
Permanent link to this record
 

 
Author Karine Sellegri, Alessia Nicosia, Evelyn Freney, Julia Uitz, Melilotus Thyssen, Gérald Grégori, Anja Engel, Birthe Zäncker, Nils Haëntjens, Sébastien Mas, David Picard, Alexia Saint-Macary, Maija Peltola, Clémence Rose, Jonathan Trueblood, Dominique Lefevre, Barbara D’Anna, Karine Desboeufs, Nicholas Meskhidze, Cécile Guieu, Cliff S. Law doi  openurl
  Title Surface ocean microbiota determine cloud precursors Type Journal
  Year 2021 Publication Scientific Reports Abbreviated Journal  
  Volume 11 Issue 1 Pages 281  
  Keywords Atmospheric science Marine biology  
  Abstract One pathway by which the oceans influence climate is via the emission of sea spray that may subsequently influence cloud properties. Sea spray emissions are known to be dependent on atmospheric and oceanic physicochemical parameters, but the potential role of ocean biology on sea spray fluxes remains poorly characterized. Here we show a consistent significant relationship between seawater nanophytoplankton cell abundances and sea-spray derived Cloud Condensation Nuclei (CCN) number fluxes, generated using water from three different oceanic regions. This sensitivity of CCN number fluxes to ocean biology is currently unaccounted for in climate models yet our measurements indicate that it influences fluxes by more than one order of magnitude over the range of phytoplankton investigated.  
  Programme (up) 1187  
  Campaign  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2045-2322 ISBN Medium  
  Area Expedition Conference  
  Notes Approved yes  
  Call Number Serial 7264  
Permanent link to this record
 

 
Author Cyril Audrouin openurl 
  Title Croissance musculaire chez le poussin de manchot royal (Aptenodytes patagonicus), liens avec la saisonnalité et la condition corporelle. Type Master 2
  Year 2021 Publication IPHC – DEPE Strasbourg Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract  
  Programme (up) 119  
  Campaign  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved yes  
  Call Number Serial 8102  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print