|   | 
Details
   web
Record
Author Elena Dobrică, Ryan C. Ogliore, Cécile Engrand, Kazuhide Nagashima, Adrian J. Brearley
Title Mineralogy and oxygen isotope systematics of magnetite grains and a magnetite-dolomite assemblage in hydrated fine-grained Antarctic micrometeorites Type Journal
Year 2019 Publication Meteoritics & Planetary Science Abbreviated Journal
Volume 54 Issue 9 Pages 1973-1989
Keywords
Abstract We report the mineralogy and texture of magnetite grains, a magnetite-dolomite assemblage, and the adjacent mineral phases in five hydrated fine-grained Antarctic micrometeorites (H-FgMMs). Additionally, we measured the oxygen isotopic composition of magnetite grains and a magnetite-dolomite assemblage in these samples. Our mineralogical study shows that the secondary phases identified in H-FgMMs have similar textures and chemical compositions to those described previously in other primitive solar system materials, such as carbonaceous chondrites. However, the oxygen isotopic compositions of magnetite in H-FgMMs span a range of ∆17O values from +1.3‰ to +4.2‰, which is intermediate between magnetites measured in carbonaceous and ordinary chondrites (CCs and OCs). The δ18O values of magnetites in one H-FgMM have a 27‰ mass-dependent spread in a single 100 × 200 μm particle, indicating that there was a localized control of the fluid composition, probably due to a low water-to-rock mass ratio. The ∆17O values of magnetite indicate that H-FgMMs sampled a different aqueous fluid than ordinary and carbonaceous chondrites, implying that the source of H-FgMMs is probably distinct from the asteroidal source of CCs and OCs. Additionally, we analyzed the oxygen isotopic composition of a magnetite-dolomite assemblage in one of the H-FgMMs (sample 03-36-46) to investigate the temperature at which these minerals coprecipitated. We have used the oxygen isotope fractionation between the coexisting magnetite and dolomite to infer a precipitation temperature between 160 and 280 °C for this sample. This alteration temperature is 100–200 °C warmer than that determined from a calcite-magnetite assemblage from the CR2 chondrite Al Rais, but similar to the estimated temperature of aqueous alteration for unequilibrated OCs, CIs, and CMs. This suggests that the sample 03-36-46 could come from a parent body that was large enough to attain temperatures as high as the OCs, CIs, and CMs, which implies an asteroidal origin for this particular H-FgMM.
Programme 1120
Campaign
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language (up) Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1945-5100 ISBN Medium
Area Expedition Conference
Notes Approved yes
Call Number Serial 7898
Permanent link to this record