Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Dj Léandri-Breton, A Tarroux, K Elliott, P Legagneux, F Angelier, P Blévin, Vs Bråthen, P Fauchald, A Goutte, W Jouanneau, S Tartu, B Moe, O Chastel doi  isbn
openurl 
  Title Long-term tracking of an Arctic-breeding seabird indicates high fidelity for pelagic wintering areas Type Journal
  Year 2021 Publication Marine Ecology Progress Series Abbreviated Journal  
  Volume Issue Pages  
  Keywords (down)  
  Abstract Site fidelity is driven by predictable resource distributions in time and space. However, intrinsic factors related to an individual’s physiology and life-history traits can contribute to consistent foraging behaviour and movement patterns. Using 11 years of continuous geolocation tracking data (fall 2008 to spring 2019), we investigated spatiotemporal consistency in non-breeding movements in a pelagic seabird population of black-legged kittiwakes (Rissa tridactyla) breeding in the High Arctic (Svalbard). Our objective was to assess the relative importance of spatial versus temporal repeatability behind inter-annual movement consistency during winter. Most kittiwakes used pelagic regions of the western North Atlantic. Winter site fidelity was high both within and across individuals and at meso (100-1000 km) and macro scales (>1000 km). Spatial consistency in non-breeding movement was higher within than among individuals, suggesting that site fidelity might emerge from individuals’ memory to return to locations with predictable resource availability. Consistency was also stronger in space than in time, suggesting that it was driven by consistent resource pulses that may vary in time more so than in space. Nonetheless, some individuals displayed more flexibility by adopting a strategy of itinerancy during winter, and the causes of this flexibility are unclear. Specialization for key wintering areas can indicate vulnerability to environmental perturbations, with winter survival and carry-over effects arising from winter conditions as potential drivers of population dynamics  
  Programme 330  
  Campaign  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN 0171-8630, 1616-1599 Medium  
  Area Expedition Conference  
  Notes Approved yes  
  Call Number Serial 7988  
Permanent link to this record
 

 
Author L A Ermert, K Sager, T Nissen-Meyer, A Fichtner doi  openurl
  Title Multifrequency inversion of global ambient seismic sources Type Journal
  Year 2021 Publication Geophysical Journal International Abbreviated Journal  
  Volume 225 Issue 3 Pages 1616-1623  
  Keywords (down)  
  Abstract We develop and apply a method to constrain the space- and frequency-dependent location of ambient noise sources. This is based on ambient noise cross-correlation inversion using numerical wavefield simulations, which honour 3-D crustal and mantle structure, ocean loading and finite-frequency effects. In the frequency range from 3 to 20 mHz, our results constrain the global source distribution of the Earth’s hum, averaged over the Southern Hemisphere winter season of 9 yr. During Southern Hemisphere winter, the dominant sources are largely confined to the Southern Hemisphere, the most prominent exception being the Izu-Bonin-Mariana arc, which is the most active source region between 12 and 20 mHz. Generally, strong hum sources seem to be associated with either coastlines or bathymetric highs. In contrast, deep ocean basins are devoid of hum sources. While being based on the relatively small number of STS-1 broad-band stations that have been recording continuously from 2004 to 2013, our results demonstrate the practical feasibility of a frequency-dependent noise source inversion that accounts for the complexities of 3-D wave propagation. It may thereby improve full-waveform ambient noise inversions and our understanding of the physics of noise generation.  
  Programme 133  
  Campaign  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0956-540X ISBN Medium  
  Area Expedition Conference  
  Notes Approved yes  
  Call Number Serial 7992  
Permanent link to this record
 

 
Author Pierre-Yves Pascal, Yann Reynaud, Elie Poulin, Chantal De Ridder, Thomas Saucede doi  openurl
  Title Feeding in spatangoids: the case of Abatus Cordatus in the Kerguelen Islands (Southern Ocean) Type Journal
  Year 2021 Publication Polar Biology Abbreviated Journal  
  Volume 44 Issue 4 Pages 795-808  
  Keywords (down)  
  Abstract Irregular urchins exclusively live in marine soft bottom habitats, dwelling either upon or inside sediments and selectively picking up sediment grains and organic particles, or swallowing bulk sediment to feed on the associated organic matter. The exact food source and dietary requirements of most irregular echinoids, however, remain incompletely understood. The schizasterid species Abatus cordatus (Verrill, 1876) is a sub-Antarctic spatangoid that is endemic to the Kerguelen. The feeding behaviour of A. cordatus was investigated using simultaneously metabarcoding and stable isotope approaches. Comparison of ingested and surrounding sediments by metabarcoding revealed a limited selective ingestion of prokaryotes and eukaryotes by the urchin. Compared to surrounding sediments, the gut content had (i) higher carbon and nitrogen concentrations potentially due to selective ingestion of organic matter and/or the sea urchin mucus secretion and (ii) δ15N enrichment due to the selective assimilation of lighter isotope in the gut. Feeding experiments were performed using 13C and 15 N-enriched sediments in aquariums. The progression of stable isotope enrichment in proximal and distal parts of the digestive track of A. cordatus revealed that all particles are not similarly transported likely due to siphon functioning. Ingestion of water with associated dissolved and particulate organic matter should play an important role in urchin nutrition. A. cordatus had a gut resident time fluctuating between 76 and 101 h and an ingestion rate of 36 mg dry sediment h−1 suggesting that dense populations of the species may play a key ecological role through bioturbation in soft bottom shallow-water habitats of the Kerguelen Islands.  
  Programme 1044  
  Campaign  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1432-2056 ISBN Medium  
  Area Expedition Conference  
  Notes Approved yes  
  Call Number Serial 8000  
Permanent link to this record
 

 
Author Benjamin Pohl, Thomas Saucède, Vincent Favier, Julien Pergaud, Deborah Verfaillie, Jean-Pierre Féral, Ylber Krasniqi, Yves Richard file  doi
openurl 
  Title Recent Climate Variability around the Kerguelen Islands (Southern Ocean) Seen through Weather Regimes Type Journal
  Year 2021 Publication Journal of Applied Meteorology and Climatology Abbreviated Journal  
  Volume 60 Issue 5 Pages 711-731  
  Keywords (down)  
  Abstract Daily Weather Regimes Are Defined Around The Kerguelen Islands (Southern Ocean) On The Basis Of Daily 500-hpa Geopotential Height Anomalies Derived From The Era5 Ensemble Reanalysis Over The Period 1979–2018. Ten Regimes Are Retained As Significant. Their Occurrences Are Highly Consistent Across Reanalysis Ensemble Members. Regimes Show Weak Seasonality And Nonsignificant Long-term Trends In Their Occurrences. Their Sequences Are Usually Short (1–3 Days), With Extreme Persistence Values Above 10 Days. Seasonal Regime Frequency Is Mostly Driven By The Phase Of The Southern Annular Mode Over Antarctica, Midlatitude Dynamics Over The Southern Ocean Such As The Pacific–south American Mode, And, To A Lesser Extent, Tropical Variability, With Significant But Weaker Relationships With El Niño–southern Oscillation. At The Local Scale Over The Kerguelen Islands, Regimes Have A Strong Influence On Measured Atmospheric And Oceanic Variables, Including Minimum And Maximum Air Temperature, Mostly Driven By Horizontal Advections, Seawater Temperature Recorded 5 M Below The Surface, Wind Speed, And Sea Level Pressure. Relationships Are Weaker For Precipitation Amounts. Regimes Also Modify Regional Contrasts Between Observational Sites In Kerguelen, Highlighting Strong Exposure Contrasts. The Regimes Allow Us To Improve Our Understanding Of Weather And Climate Variability And Interactions In This Region; They Will Be Used In Future Work To Assess Past And Projected Long-term Circulation Changes In The Southern Midlatitudes.  
  Programme 688,1044,1048  
  Campaign  
  Address  
  Corporate Author Thesis Bachelor's thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1558-8424 ISBN Medium  
  Area Expedition Conference  
  Notes Approved yes  
  Call Number Serial 8003  
Permanent link to this record
 

 
Author Daniela Levicoy, Sebastián Rosenfeld, Leyla Cárdenas doi  openurl
  Title Divergence time and species delimitation of microbivalves in the Southern Ocean: the case of Kidderia species Type Journal
  Year 2021 Publication Polar Biology Abbreviated Journal  
  Volume 44 Issue 7 Pages 1365-1377  
  Keywords (down)  
  Abstract The systematics of Subantarctic and Antarctic near-shore marine benthic invertebrates requires major revision and highlights the necessity to incorporate additional sources of information in the specimen identification chart in the Southern Ocean (SO). In this study, we aim to improve our understanding of the biodiversity of Kidderia (Dall 1876) through molecular and morphological comparisons of Antarctic and Subantarctic taxa. The microbivalves of the genus Kidderia are small brooding organisms that inhabit intertidal and shallow subtidal rocky ecosystems. This genus represents an interesting model to test the vicariance and dispersal hypothesis in the biogeography of the SO. However, the description of Kidderia species relies on a few morphological characters and biogeographic records that raise questions about the true diversity in the group. Here we will define the specimens collected with genetic tools, delimiting their respective boundaries across provinces of the SO, validating the presence of two species of Kidderia. Through the revision of taxonomic issues and species delimitation, it was possible to report that the Antarctic species is Kidderia subquadrata and the species recorded in the Subantarctic islands Diego Ramirez, South Georgia and the Kerguelen Archipelago is Kidderia minuta. The divergence time estimation suggests the origin and diversification of Kidderia lineages are related to historical vicariant processes probably associated with the separation of the continental landmasses close to the late Eocene.  
  Programme 1044  
  Campaign  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1432-2056 ISBN Medium  
  Area Expedition Conference  
  Notes Approved yes  
  Call Number Serial 8004  
Permanent link to this record
 

 
Author Christophe Leroy-Dos Santos, Mathieu Casado, Frédéric Prié, Olivier Jossoud, Erik Kerstel, Morgane Farradèche, Samir Kassi, Elise Fourré, Amaëlle Landais file  doi
openurl 
  Title A dedicated robust instrument for water vapor generation at low humidity for use with a laser water isotope analyzer in cold and dry polar regions Type Journal
  Year 2021 Publication Atmospheric Measurement Techniques Abbreviated Journal  
  Volume 14 Issue 4 Pages 2907-2918  
  Keywords (down)  
  Abstract Obtaining Precise Continuous Measurements Of Water Vapor Isotopic Composition In Dry Places (Polar Or High-altitude Regions) Is An Important Challenge. The Current Limitation Is The Strong Influence Of Humidity On The Measured Water Isotopic Composition By Laser Spectroscopy Instruments For Low Humidity Levels (Below 3000 Ppmv). This Problem Is Addressed By Determining The Relationships Between Humidity And Measured δ18o And δD Of Known Water Standards. Here, We Present The Development Of A Robust Field Instrument Able To Generate Water Vapor, Down To 70 Ppmv, At Very Stable Humidity Levels (Average 1σ Lower Than 10 Ppmv). This Instrument, Operated By A Raspberry Interface, Can Be Coupled To A Commercial Laser Spectroscopy Instrument. We Checked The Stability Of The System As Well As Its Accuracy When Expressing The Measured Isotopic Composition Of Water Vapor On The Vsmow–slap (Vienna Standard Mean Ocean Water – Standard Light Antarctic Precipitation) Scale. It Proved To Be Highly Stable During Autonomous Operation Over More Than 1 Year At The East Antarctic Concordia And Dumont D'urville Stations.  
  Programme 1110,1169,1205  
  Campaign  
  Address  
  Corporate Author Thesis Bachelor's thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1867-1381 ISBN Medium  
  Area Expedition Conference  
  Notes Approved yes  
  Call Number Serial 8010  
Permanent link to this record
 

 
Author Tijl Verhoelst, Steven Compernolle, Gaia Pinardi, Jean-Christopher Lambert, Henk J. Eskes, Kai-Uwe Eichmann, Ann Mari Fjæraa, José Granville, Sander Niemeijer, Alexander Cede, Martin Tiefengraber, François Hendrick, Andrea Pazmiño, Alkiviadis Bais, Ariane Bazureau, K. Folkert Boersma, Kristof Bognar, Angelika Dehn, Sebastian Donner, Aleksandr Elokhov, Manuel Gebetsberger, Florence Goutail, Michel Grutter de la Mora, Aleksandr Gruzdev, Myrto Gratsea, Georg H. Hansen, Hitoshi Irie, Nis Jepsen, Yugo Kanaya, Dimitris Karagkiozidis, Rigel Kivi, Karin Kreher, Pieternel F. Levelt, Cheng Liu, Moritz Müller, Monica Navarro Comas, Ankie J. M. Piters, Jean-Pierre Pommereau, Thierry Portafaix, Cristina Prados-Roman, Olga Puentedura, Richard Querel, Julia Remmers, Andreas Richter, John Rimmer, Claudia Rivera Cárdenas, Lidia Saavedra de Miguel, Valery P. Sinyakov, Wolfgang Stremme, Kimberly Strong, Michel Van Roozendael, J. Pepijn Veefkind, Thomas Wagner, Folkard Wittrock, Margarita Yela González, Claus Zehner doi  openurl
  Title Ground-based validation of the Copernicus Sentinel-5P TROPOMI NO2 measurements with the NDACC ZSL-DOAS, MAX-DOAS and Pandonia global networks Type Journal
  Year 2021 Publication Atmospheric Measurement Techniques Abbreviated Journal  
  Volume 14 Issue 1 Pages 481-510  
  Keywords (down)  
  Abstract This Paper Reports On Consolidated Ground-based Validation Results Of The Atmospheric No2 Data Produced Operationally Since April 2018 By The Tropospheric Monitoring Instrument (Tropomi) On Board Of The Esa/eu Copernicus Sentinel-5 Precursor (S5p) Satellite. Tropospheric, Stratospheric, And Total No2 Column Data From S5p Are Compared To Correlative Measurements Collected From, Respectively, 19 Multi-axis Differential Optical Absorption Spectroscopy (Max-doas), 26 Network For The Detection Of Atmospheric Composition Change (Ndacc) Zenith-scattered-light Doas (Zsl-doas), And 25 Pandonia Global Network (Pgn)/pandora Instruments Distributed Globally. The Validation Methodology Gives Special Care To Minimizing Mismatch Errors Due To Imperfect Spatio-temporal Co-location Of The Satellite And Correlative Data, E.g. By Using Tailored Observation Operators To Account For Differences In Smoothing And In Sampling Of Atmospheric Structures And Variability And Photochemical Modelling To Reduce Diurnal Cycle Effects. Compared To The Ground-based Measurements, S5p Data Show, On Average, (I) A Negative Bias For The Tropospheric Column Data, Of Typically −23 % To −37 % In Clean To Slightly Polluted Conditions But Reaching Values As High As −51 % Over Highly Polluted Areas; (Ii) A Slight Negative Median Difference For The Stratospheric Column Data, Of About −0.2 Pmolec Cm−2, I.e. Approx. −2 % In Summer To −15 % In Winter; And (Iii) A Bias Ranging From Zero To −50 % For The Total Column Data, Found To Depend On The Amplitude Of The Total No2 Column, With Small To Slightly Positive Bias Values For Columns Below 6 Pmolec Cm−2 And Negative Values Above. The Dispersion Between S5p And Correlative Measurements Contains Mostly Random Components, Which Remain Within Mission Requirements For The Stratospheric Column Data (0.5 Pmolec Cm−2) But Exceed Those For The Tropospheric Column Data (0.7 Pmolec Cm−2). While A Part Of The Biases And Dispersion May Be Due To Representativeness Differences Such As Different Area Averaging And Measurement Times, It Is Known That Errors In The S5p Tropospheric Columns Exist Due To Shortcomings In The (Horizontally Coarse) A Priori Profile Representation In The Tm5-mp Chemical Transport Model Used In The S5p Retrieval And, To A Lesser Extent, To The Treatment Of Cloud Effects And Aerosols. Although Considerable Differences (Up To 2 Pmolec Cm−2 And More) Are Observed At Single Ground-pixel Level, The Near-real-time (Nrti) And Offline (Offl) Versions Of The S5p No2 Operational Data Processor Provide Similar No2 Column Values And Validation Results When Globally Averaged, With The Nrti Values Being On Average 0.79 % Larger Than The Offl Values.  
  Programme 209  
  Campaign  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1867-1381 ISBN Medium  
  Area Expedition Conference  
  Notes Approved yes  
  Call Number Serial 8013  
Permanent link to this record
 

 
Author Lucia Gualtieri, Etienne Bachmann, Frederik J Simons, Jeroen Tromp doi  openurl
  Title Generation of secondary microseism Love waves: effects of bathymetry, 3-D structure and source seasonality Type Journal
  Year 2021 Publication Geophysical Journal International Abbreviated Journal  
  Volume 226 Issue 1 Pages 192-219  
  Keywords (down)  
  Abstract Secondary microseisms are ubiquitous ambient noise vibrations due to ocean activity, dominating worldwide seismographic records at seismic periods between 3 and 10 s. Their origin is a heterogeneous distribution of pressure fluctuations along the ocean surface. In spherically symmetric earth models, no Love surface waves are generated by such a distributed surface source. We present global-scale modelling of three-component secondary microseisms using a spectral-element method, which naturally accounts for a realistic distribution of surface sources, topography and bathymetry, and 3-D heterogeneity in Earth’s crust and mantle. Seismic Love waves emerge naturally once the system reaches steady state. The ergodic origin of Love waves allows us to model the horizontal components of secondary microseisms for the first time. Love waves mostly originate from the interaction of the seismic wavefield with heterogeneous Earth structure in which the mantle plays an important role despite the short periods involved. Bathymetry beneath the source region produces weak horizontal forces that are responsible for a weak and diffuse Love wavefield. The effect of bathymetric force splitting into radial and horizontal components is overall negligible when compared to the effect of 3-D heterogeneity. However, we observe small and well-focused Love-wave arrivals at seismographic stations in Europe due to force splitting at the steepest portion of the North Atlantic Ridge and the ocean–continent boundary. The location of the sources of Love waves is seasonal at periods shorter than about 7 s, while seasonality is lost at the longer periods. Sources of Rayleigh and Love waves from the same storm may be located very far away, indicating that energy equipartitioning might not hold in the secondary microseism period band.  
  Programme 133  
  Campaign  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0956-540X ISBN Medium  
  Area Expedition Conference  
  Notes Approved yes  
  Call Number Serial 8016  
Permanent link to this record
 

 
Author Robert E. Anthony, Adam T. Ringler, Michael DuVernois, Kent R. Anderson, David C. Wilson doi  openurl
  Title Six Decades of Seismology at South Pole, Antarctica: Current Limitations and Future Opportunities to Facilitate New Geophysical Observations Type Journal
  Year 2021 Publication Seismological Research Letters Abbreviated Journal  
  Volume 92 Issue 5 Pages 2718-2735  
  Keywords (down)  
  Abstract Seismograms from the South Pole have been important for seismological observations for over six decades by providing (until 2007) the only continuous seismic records from the interior of the Antarctic continent. The South Pole, Antarctica station has undergone many updates over the years, including conversion to a digital recording station as part of the Global Seismographic Network (GSN) in 1991 and being relocated to multiple deep (>250  m) boreholes 8 km away from the station in 2003 (and renamed to Quiet South Pole, Antarctica [QSPA]). Notably, QSPA is the second most used GSN station by the National Earthquake Information Center to pick phases used to rapidly detect and locate earthquakes globally, and has been used for a variety of glaciological and oceanography studies. In addition, it is the only seismic station on the Earth where low‐frequency (<5  mHz), normal‐mode oscillations of the planet excited by large earthquakes can be recorded without influence from Earth’s rotation, and most of the direct effects of the solid Earth tide vanish. However, the current sensors are largely 1980s vintage, and, while able to make some lower‐frequency observations from earthquakes, the borehole sensors appear unable to resolve ambient ground motions at frequencies lower than 25 mHz due to instrument noise and contamination from magnetic field variations. Recently developed borehole sensors offer the potential to extend background noise observations to below 3 mHz, which would substantially improve the fidelity and scientific value of seismic observations at South Pole. Through collaboration with the IceCube Neutrino Observatory, the opportunity exists to emplace a modern very broadband seismometer near the base (>2  km depth) of the Antarctic ice cap, which could lead to unprecedented seismic observations at long periods and facilitate a broad spectrum of Earth science studies.  
  Programme 133  
  Campaign  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0895-0695 ISBN Medium  
  Area Expedition Conference  
  Notes Approved yes  
  Call Number Serial 8018  
Permanent link to this record
 

 
Author Jean Roger, Bernard Pelletier, Maxime Duphil, Jérôme Lefèvre, Jérôme Aucan, Pierre Lebellegard, Bruce Thomas, Céline Bachelier, David Varillon doi  openurl
  Title The Mw 7.5 Tadine (Maré, Loyalty Is.) earthquake and related tsunami of December 5, 2018: implications for tsunami hazard assessment in New Caledonia Type Journal
  Year 2021 Publication Natural Hazards and Earth System Sciences Discussions Abbreviated Journal  
  Volume Issue Pages 1-25  
  Keywords (down)  
  Abstract On The 5th Of December 2018, A Magnitude Mw 7.5 Earthquake Occurred Southeast Of Maré, An Island Of The Loyalty Archipelago, New Caledonia. This Earthquake Is Located At The Junction Between The Plunging Loyalty Ridge And The Southernmost Vanuatu Arc, In A Tectonically Very Active Area Regularly Subjected To Strong Seismic Crises And Events Higher Than Magnitude 7 And Up To 8. Widely Felt In New Caledonia It Has Been Immediately Followed By A Tsunami Warning, Confirmed Shortly After By A First Wave Arrival At The Loyalty Islands Tide Gauges (Maré And Lifou), Then Along The East Coast Of Grande Terre Of New Caledonia And In Several Islands Of The Vanuatu Archipelago. Seafloor Initial Deformation Linked To Tsunami Generation Has Been Modeled With Most Numerical Code Using Earthquake Parameters Available From Seismic Observatories. Then The Wave Propagation Has Been Modeled Using Schism, Another Modelling Code Solving The Shallow Water Equations On An Unstructured Grid Based On A New Regional Dem Of ~180 M Resolution And Allowing Refinement In Many Critical Areas. Finally, The Results Have Been Compared To Tide Gauge Records, Field Observations And Testimonials From 2018. The Arrival Times, Wave Amplitude And Polarities Present Good Similarities, Especially In Far-field Locations (Hienghène, Port-vila And Poindimié). Maximum Wave Heights And Energy Maps For Two Different Scenarios Highlight The Fact That The Orientation Of The Source (Strike Of The Rupture) Played An Important Role, Focusing The Maximum Energy Path Of The Tsunami South Of Grande-terre And The Isle Of Pines. However, Both Scenarios Indicate Similar Propagation Toward Aneityum, Vanuatu Southernmost Island, The Bathymetry Acting Like A Waveguide. This Study Has A Significant Implication In Tsunami Hazard Mitigation In New Caledonia As It Helps To Validate The Modelling Code And Process Used To Prepare A Scenarios Database For Warning And Coastal Evacuation.  
  Programme 133  
  Campaign  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1561-8633 ISBN Medium  
  Area Expedition Conference  
  Notes Approved yes  
  Call Number Serial 8019  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print