Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Karl-Ludwig Klein doi  openurl
  Title Radio Astronomical Tools for the Study of Solar Energetic Particles I. Correlations and Diagnostics of Impulsive Acceleration and Particle Propagation Type Journal
  Year 2021 Publication Frontiers in Astronomy and Space Sciences Abbreviated Journal  
  Volume 7 Issue (up) Pages 105  
  Keywords  
  Abstract Solar energetic particles (SEPs) are sporadically ejected from the Sun during flares and coronal mass ejections. They are of major astrophysical interest, because the proximity of the Sun allows for detailed multi-messenger studies. They affect space weather due to interactions with electronics, with the Earth’s atmosphere, and with humans if they leave the protective shield of the magnetosphere of the Earth. Since early studies in the 1950s, starting with particle detectors on the ground, SEP events have been related to radio bursts. Two subjects are addressed in this chapter: attempts to establish quantitative correlations between SEPs and microwave bursts produced by gyro synchrotron radiation of mildly relativistic electrons, and the information derived from type III radio bursts on impulsive processes of particle acceleration and the coronal and interplanetary propagation. Type III radio bursts produced by electron beams on open magnetic field lines have a wide range of applications, including the identification of acceleration regions, the identification of confined particle acceleration with coronal signatures, but no SEPs, and the paths that the electrons, and energetic charged particles in general, take to travel from the low corona to the Heliosphere in case they escape. Simple scenarios of coronal particle acceleration are confirmed in relatively simple and short events. But the comparison with particle transport models shows that longer and delayed acceleration episodes exist especially in large SEP events. They will be discussed in a companion chapter.  
  Programme 227  
  Campaign  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2296-987X ISBN Medium  
  Area Expedition Conference  
  Notes Approved yes  
  Call Number Serial 6775  
Permanent link to this record
 

 
Author J. Rojas, J. Duprat, C. Engrand, E. Dartois, L. Delauche, M. Godard, M. Gounelle, J. D. Carrillo-Sánchez, P. Pokorný, J. M. C. Plane doi  openurl
  Title The micrometeorite flux at Dome C (Antarctica), monitoring the accretion of extraterrestrial dust on Earth Type Journal
  Year 2021 Publication Earth and Planetary Science Letters Abbreviated Journal  
  Volume 560 Issue (up) Pages 116794  
  Keywords Antarctic micrometeorites atmospheric entry cosmic spherules extraterrestrial flux interplanetary dust particles zodiacal cloud  
  Abstract The annual flux of extraterrestrial material on Earth is largely dominated by sub-millimetre particles. The mass distribution and absolute value of this cosmic dust flux at the Earth's surface is however still uncertain due to the difficulty in monitoring both the collection efficiency and the exposure parameter (i.e. the area-time product in m2.yr). In this paper, we present results from micrometeorite collections originating from the vicinity of the CONCORDIA Station located at Dome C (Antarctica), where we performed several independent melts of large volumes of ultra-clean snow. The regular precipitation rate and the exceptional cleanliness of the snow from central Antarctica allow a unique control on both the exposure parameter and the collection efficiency. A total of 1280 unmelted micrometeorites (uMMs) and 808 cosmic spherules (CSs) with diameters ranging from 30 to 350 μm were identified. Within that size range, we measured mass fluxes of 3.0 μg.m−2.yr−1 for uMMs and 5.6 μg.m−2.yr−1 for CSs. Extrapolated to the global flux of particles in the 12-700 μm diameter range, the mass flux of dust at Earth's surface is 5,200±12001500 tons.yr−1 (1,600±500 and 3,600±7001000 tons.yr−1 of uMMs and CSs, respectively). We indicate the statistical uncertainties expected for collections with exposure parameters in the range of 0.1 up to 105 m2.yr. In addition, we estimated the flux of altered and unaltered carbon carried by heated and un-heated particles at Earth's surface. The mass distributions of CSs and uMMs larger than 100 μm are fairly well reproduced by the CABMOD-ZoDy model that includes melting and evaporation during atmospheric entry of the interplanetary dust flux. These numerical simulations suggest that most of the uMMs and CSs originate from Jupiter family comets and a minor part from the main asteroid belt. The total dust mass input before atmospheric entry is estimated at 15,000 tons.yr−1. The existing discrepancy between the flux data and the model for uMMs below 100 μm suggests that small fragile uMMs may evade present day collections, and/or that the amount of small interplanetary particles at 1 AU may be smaller than expected.  
  Programme 1120  
  Campaign  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0012-821X ISBN Medium  
  Area Expedition Conference  
  Notes Approved yes  
  Call Number Serial 8244  
Permanent link to this record
 

 
Author Christopher Burot, Rémi Amiraux, Patricia Bonin, Sophie Guasco, Marcel Babin, Fabien Joux, Dominique Marie, Laure Vilgrain, Hermann J. Heipieper, Jean-François Rontani doi  openurl
  Title Viability and stress state of bacteria associated with primary production or zooplankton-derived suspended particulate matter in summer along a transect in Baffin Bay (Arctic Ocean) Type Journal
  Year 2021 Publication Science of The Total Environment Abbreviated Journal  
  Volume 770 Issue (up) Pages 145252  
  Keywords Bacterial viability EPS isomerase Micro- and macro-zooplankton Salinity stress Sea ice algae  
  Abstract In the framework of the GreenEdge Project (whose the general objective is to understand the dynamic of the phytoplankton spring bloom in Arctic Ocean), lipid composition and viability and stress state of bacteria were monitored in sea ice and suspended particulate matter (SPM) samples collected in 2016 along a transect from sea ice to open water in Baffin Bay (Arctic Ocean). Lipid analyses confirmed the dominance of diatoms in the bottommost layer of ice and suggested (i) the presence of a strong proportion of micro-zooplankton in SPM samples collected at the western ice covered St 403 and St 409 and (ii) a high proportion of macro-zooplankton (copepods) in SPM samples collected at the eastern ice covered St 413 and open water St 418. The use of the propidium monoazide (PMA) method allowed to show a high bacterial mortality in sea ice and in SPM material collected in shallower waters at St 409 and St 418. This mortality was attributed to the release of bactericidal free fatty acids by sympagic diatoms under the effect of light stress. A strong cis-trans isomerization of bacterial MUFAs was observed in the deeper SPM samples collected at the St 403 and St 409. It was attributed to the ingestion of bacteria stressed by salinity in brine channels of ice by sympagic bacterivorous microzooplankton (ciliates) incorporating trans fatty acids of their preys before to be released in the water column during melting. The high trans/cis ratios also observed in SPM samples collected in the shallower waters at St 413 and St 418 suggest the presence of positively or neutrally buoyant extracellular polymeric substances (EPS)-rich particles retained in sea ice and discharged (with bacteria stressed by salinity) in seawater after the initial release of algal biomass. Such EPS particles, which are generally considered as ideal vectors for bacterial horizontal distribution in the Arctic, appeared to contain a high proportion of dead and non-growing bacteria.  
  Programme 1164  
  Campaign  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0048-9697 ISBN Medium  
  Area Expedition Conference  
  Notes Approved yes  
  Call Number Serial 8253  
Permanent link to this record
 

 
Author F. Bultelle, I. Boutet, S. Devin, F. Caza, Y. St-Pierre, R. Péden, P. Brousseau, P. Chan, D. Vaudry, F. Le Foll, M. Fournier, M. Auffret, B. Rocher doi  openurl
  Title Molecular response of a sub-antarctic population of the blue mussel (Mytilus edulis platensis) to a moderate thermal stress Type Journal
  Year 2021 Publication Marine Environmental Research Abbreviated Journal  
  Volume 169 Issue (up) Pages 105393  
  Keywords 2DE Abiotic stress Biomonitoring Gills Indicator species Kerguelen island Mytilus sp. qRT-PCR Temperature  
  Abstract The Kerguelen Islands (49°26′S, 69°50′E) represent a unique environment due to their geographical isolation, which protects them from anthropogenic pollution. The ability of the endemic mussel, part of the Mytilus complex, to cope with moderate heat stress was explored using omic tools. Transcripts involved in six major metabolic functions were selected and the qRT-PCR data indicated mainly changes in aerobic and anaerobic energy metabolism and stress response. Proteomic comparisons revealed a typical stress response pattern with cytoskeleton modifications and elements suggesting increased energy metabolism. Results also suggest conservation of protein homeostasis by the long-lasting presence of HSP while a general decrease in transcription is observed. The overall findings are consistent with an adaptive response to moderate stresses in mussels in good physiological condition, i.e. living in a low-impact site, and with the literature concerning this model species. Therefore, local blue mussels could be advantageously integrated into biomonitoring strategies, especially in the context of Global Change.  
  Programme 409  
  Campaign  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0141-1136 ISBN Medium  
  Area Expedition Conference  
  Notes Approved yes  
  Call Number Serial 8256  
Permanent link to this record
 

 
Author Martin Tournier, Pauline Goulet, Nadège Fonvieille, David Nerini, Mark Johnson, Christophe Guinet doi  openurl
  Title A novel animal-borne miniature echosounder to observe the distribution and migration patterns of intermediate trophic levels in the Southern Ocean Type Journal
  Year 2021 Publication Journal of Marine Systems Abbreviated Journal  
  Volume 223 Issue (up) Pages 103608  
  Keywords Biologging Diel vertical migration Functional data analysis Marine acoustics Micronekton Sonar tag  
  Abstract Despite expanding in-situ observations of marine ecosystems by new-generation sensors, information about intermediate trophic levels remains sparse. Indeed, mid-trophic levels, while encompassing a broad range of zooplankton and micronekton organisms that represent a key component of marine ecosystems and sustain large and diverse communities of marine predators, are challenging to sample and identify. In this study, we examined whether an animal-borne miniature active echosounder can provide information on the distribution and movements of mid-trophic level organisms. If so, such a sonar tag, harnessing the persistent diving behaviour of far-ranging marine mammals, could greatly increase the density of data on this under-studied biome. High-frequency (1.5 MHz) sonar tags were deployed simultaneously with oceanographic tags on two southern elephant seals (Mirounga leonina), at the Kerguelen Islands and Valdés Peninsula (Argentina), and recorded acoustic backscatter while the seals foraged respectively in the Indian and the Atlantic sectors of the Southern Ocean. The backscatter varied widely over time and space, and the seals attempted to capture only a small fraction of the insonified targets. Diel vertical migration patterns were clearly identifiable in the data, reinforcing our confidence in the ability of the sonar tags to detect living mid-trophic organisms along with possibly sinking biological detritus. Moreover, CTD tags attached to the same animals indicated how the abundance, size distribution, and diel migration behaviour of acoustic targets varied with water bodies. These preliminary results demonstrate the potential for animal-borne sonars to provide detailed in-situ information. Further validation effort will make it a valuable tool to refine the estimation of carbon export fluxes as well as for assessing the variation of mid-trophic level biomass according to oceanographic domains and seasons.  
  Programme 1201  
  Campaign  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0924-7963 ISBN Medium  
  Area Expedition Conference  
  Notes Approved yes  
  Call Number Serial 8260  
Permanent link to this record
 

 
Author Ménot, R.P. isbn  openurl
  Title The Geology of East Antarctica (between ∼85° E and ∼145° E),  in Geology of the Antarctic Continent Type Book
  Year 2021 Publication Geology of the antarctic continent. e.schweizerbart’sche verlag., stuttgart, Abbreviated Journal  
  Volume Issue (up) Pages 322-393  
  Keywords  
  Abstract This chapter treats the Antarctic region facing West and South Australia, approximately from 85° E to 145° E (Fig. 1-1), i.e. the easternmost province of the “East Antarctic Shield” (see chapters 1.2/1.2.1). Therefore, the following major areas will be described: from West to East, Kaiser-Wilhelm-II.-Land, Queen Mary Land, Wilkes Land, Terre Adélie and western George V Land. Eastern George V Land and northern Victoria Land are excluded from this review as they can be regarded as the foreland of the Transantarctic Mountains geological domain (chapters 4 and 5).  
  Programme 1003  
  Campaign  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN 978-3-443-11034-5 Medium  
  Area Expedition Conference  
  Notes Approved yes  
  Call Number Serial 8296  
Permanent link to this record
 

 
Author TaeOh Kwon, Hideaki Shibata, Sebastian Kepfer-Rojas, Inger K. Schmidt, Klaus S. Larsen, Claus Beier, Björn Berg, Kris Verheyen, Jean-Francois Lamarque, Frank Hagedorn, Nico Eisenhauer, Ika Djukic, TeaComposition Network , TaeOh Kwon, Hideaki Shibata, Sebastian Kepfer-Rojas, Inger Kappel Schmidt, Klaus Steenberg Larsen, Claus Beier, Björn Berg, Kris Verheyen, Jean Francois Lamarque, Frank Hagedorn, Nico Eisenhauer, Ika Djukic, Adriano Caliman, Alain Paquette, Alba Gutiérrez-Girón, Alessandro Petraglia, Algirdas Augustaitis, Amélie Saillard, Ana Carolina Ruiz-Fernández, Ana I. Sousa, Ana I. Lillebø, Anderson da Rocha Gripp, Andrea Lamprecht, Andreas Bohner, André-Jean Francez, Andrey Malyshev, Andrijana Andrić, Angela Stanisci, Anita Zolles, Anna Avila, Anna-Maria Virkkala, Anne Probst, Annie Ouin, Anzar A. Khuroo, Arne Verstraeten, Artur Stefanski, Aurora Gaxiola, Bart Muys, Beatriz Gozalo, Bernd Ahrends, Bo Yang, Brigitta Erschbamer, Carmen Eugenia Rodríguez Ortíz, Casper T. Christiansen, Céline Meredieu, Cendrine Mony, Charles Nock, Chiao-Ping Wang, Christel Baum, Christian Rixen, Christine Delire, Christophe Piscart, Christopher Andrews, Corinna Rebmann, Cristina Branquinho, Dick Jan, Dirk Wundram, Dušanka Vujanović, E. Carol Adair, Eduardo Ordóñez-Regil, Edward R. Crawford, Elena F. Tropina, Elisabeth Hornung, Elli Groner, Eric Lucot, Esperança Gacia, Esther Lévesque, Evanilde Benedito, Evgeny A. Davydov, Fábio Padilha Bolzan, Fernando T. Maestre, Florence Maunoury-Danger, Florian Kitz, Florian Hofhansl, Flurin Sutter, Francisco de Almeida Lobo, Franco Leadro Souza, Franz Zehetner, Fulgence Kouamé Koffi, Georg Wohlfahrt, Giacomo Certini, Gisele Daiane Pinha, Grizelle González, Guylaine Canut, Harald Pauli, Héctor A. Bahamonde, Heike Feldhaar, Heinke Jäger, Helena Cristina Serrano, Hélène Verheyden, Helge Bruelheide, Henning Meesenburg, Hermann Jungkunst, Hervé Jactel, Hiroko Kurokawa, Ian Yesilonis, Inara Melece, Inge van Halder, Inmaculada García Quirós, István Fekete, Ivika Ostonen, Jana Borovská, Javier Roales, Jawad Hasan Shoqeir, Jean-Christophe Lata, Jean-Luc Probst, Jeyanny Vijayanathan, Jiri Dolezal, Joan-Albert Sanchez-Cabeza, Joël Merlet, John Loehr, Jonathan von Oppen, Jörg Löffler, José Luis Benito Alonso, José-Gilberto Cardoso-Mohedano, Josep Peñuelas, Joseph C. Morina, Juan Darío Quinde, Juan J. Jiménez, Juha M. Alatalo, Julia Seeber, Julia Kemppinen, Jutta Stadler, Kaie Kriiska, Karel Van den Meersche, Karibu Fukuzawa, Katalin Szlavecz, Katalin Juhos, Katarína Gerhátová, Kate Lajtha, Katie Jennings, Katja Tielbörger, Kazuhiko Hoshizaki, Ken Green, Klaus Steinbauer, Laryssa Pazianoto, Laura Dienstbach, Laura Yahdjian, Laura J. Williams, Laurel Brigham, Lee Hanna, Liesbeth van den Brink, Lindsey Rustad, Lourdes Morillas, Luciana Silva Carneiro, Luciano Di Martino, Luis Villar, Luísa Alícida Fernandes Tavares, Madison Morley, Manuela Winkler, Marc Lebouvier, Marcello Tomaselli, Marcus Schaub, Maria Glushkova, Maria Guadalupe Almazan Torres, Marie-Anne de Graaff, Marie-Noëlle Pons, Marijn Bauters, Marina Mazón, Mark Frenzel, Markus Wagner, Markus Didion, Maroof Hamid, Marta Lopes, Martha Apple, Martin Weih, Matej Mojses, Matteo Gualmini, Matthew Vadeboncoeur, Michael Bierbaumer, Michael Danger, Michael Scherer-Lorenzen, Michal Růžek, Michel Isabellon, Michele Di Musciano, Michele Carbognani, Miglena Zhiyanski, Mihai Puşcaş, Milan Barna, Mioko Ataka, Miska Luoto, Mohammed H. Alsafaran, Nadia Barsoum, Naoko Tokuchi, Nathalie Korboulewsky, Nicolas Lecomte, Nina Filippova, Norbert Hölzel, Olga Ferlian, Oscar Romero, Osvaldo Pinto-Jr, Pablo Peri, Pavel Dan Turtureanu, Peter Haase, Peter Macreadie, Peter B. Reich, Petr Petřík, Philippe Choler, Pierre Marmonier, Quentin Ponette, Rafael Dettogni Guariento, Rafaella Canessa, Ralf Kiese, Rebecca Hewitt, Robert Weigel, Róbert Kanka, Roberto Cazzolla Gatti, Rodrigo Lemes Martins, Romà Ogaya, Romain Georges, Rosario G. Gavilán, Sally Wittlinger, Sara Puijalon, Satoshi Suzuki, Schädler Martin, Schmidt Anja, Sébastien Gogo, Silvio Schueler, Simon Drollinger, Simone Mereu, Sonja Wipf, Stacey Trevathan-Tackett, Stefan Stoll, Stefan Löfgren, Stefan Trogisch, Steffen Seitz, Stephan Glatzel, Susanna Venn, Sylvie Dousset, Taiki Mori, Takanori Sato, Takuo Hishi, Tatsuro Nakaji, Theurillat Jean-Paul, Thierry Camboulive, Thomas Spiegelberger, Thomas Scholten, Thomas J. Mozdzer, Till Kleinebecker, Tomáš Rusňák, Tshililo Ramaswiela, Tsutom Hiura, Tsutomu Enoki, Tudor-Mihai Ursu, Umberto Morra di Cella, Ute Hamer, Valentin Klaus, Valter Di Cecco, Vanessa Rego, Veronika Fontana, Veronika Piscová, Vincent Bretagnolle, Vincent Maire, Vinicius Farjalla, Vittoz Pascal, Wenjun Zhou, Wentao Luo, William Parker, Yasuhiro Utsumi, Yuji Kominami, Zsolt Kotroczó, Zsolt Tóth openurl 
  Title Effects of Climate and Atmospheric Nitrogen Deposition on Early to Mid-Term Stage Litter Decomposition Across Biomes Type Journal
  Year 2021 Publication Frontiers in Forests and Global Change Abbreviated Journal  
  Volume 4 Issue (up) Pages  
  Keywords  
  Abstract Litter decomposition is a key process for carbon and nutrient cycling in terrestrial ecosystems and is mainly controlled by environmental conditions, substrate quantity and quality as well as microbial community abundance and composition. In particular, the effects of climate and atmospheric nitrogen (N) deposition on litter decomposition and its temporal dynamics are of significant importance, since their effects might change over the course of the decomposition process. Within the TeaComposition initiative, we incubated Green and Rooibos teas at 524 sites across nine biomes. We assessed how macroclimate and atmospheric inorganic N deposition under current and predicted scenarios (RCP 2.6, RCP 8.5) might affect litter mass loss measured after 3 and 12 months. Our study shows that the early to mid-term mass loss at the global scale was affected predominantly by litter quality (explaining 73% and 62% of the total variance after 3 and 12 months, respectively) followed by climate and N deposition. The effects of climate were not litter-specific and became increasingly significant as decomposition progressed, with MAP explaining 2% and MAT 4% of the variation after 12 months of incubation. The effect of N deposition was litter-specific, and significant only for 12-month decomposition of Rooibos tea at the global scale. However, in the temperate biome where atmospheric N deposition rates are relatively high, the 12-month mass loss of Green and Rooibos teas decreased significantly with increasing N deposition, explaining 9.5% and 1.1% of the variance, respectively. The expected changes in macroclimate and N deposition at the global scale by the end of this century are estimated to increase the 12-month mass loss of easily decomposable litter by 1.1–3.5% and of the more stable substrates by 3.8–10.6%, relative to current mass loss. In contrast, expected changes in atmospheric N deposition will decrease the mid-term mass loss of high-quality litter by 1.4–2.2% and that of low-quality litter by 0.9–1.5% in the temperate biome. Our results suggest that projected increases in N deposition may have the capacity to dampen the climate-driven increases in litter decomposition depending on the biome and decomposition stage of substrate.  
  Programme 136  
  Campaign  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2624-893X ISBN Medium  
  Area Expedition Conference  
  Notes Approved yes  
  Call Number Serial 8301  
Permanent link to this record
 

 
Author Lavrillier, A., Gabyshev S. openurl 
  Title A Siberian Indigenous Knowledge System for Understanding Climate Change Type Journal
  Year 2021 Publication Interact – stories of arctic science ii Abbreviated Journal  
  Volume II Issue (up) Pages 18-19, 115  
  Keywords  
  Abstract  
  Programme 1127  
  Campaign  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved yes  
  Call Number Serial 8319  
Permanent link to this record
 

 
Author Guillaume Hubert doi  openurl
  Title Analyses of the Secondary Cosmic Ray using CCD camera in high-altitude observatories and Antarctica stations Type Peer-reviewed symposium
  Year 2021 Publication Abbreviated Journal  
  Volume 395 Issue (up) Pages 1238  
  Keywords Array Pixel Sensors (APS) Charge-Coupled Device (CCD)  
  Abstract Charge-Coupled Device (CCD) and Array Pixel Sensors (APS) can be used to image radiation-induced energy deposition. The high sensitivity of depleted silicon to ionizing radiation constitutes an opportunity to investigate radiation effects while it is a nuisance to astronomer activities. CCD and APS provide a better combination of spatial and intensity resolution for radiation events than other available types of detector. This paper proposes to analyze radiation events observed in the CCD camera and more specifically analyses of charge deposition spectra and spatially extensive events. Measurements were performed in the Pic du Midi from 2011 to 2015 and in the Concordia Antarctica station since 2018. Coupled transport models (i.e. particle transport and charge transport in semiconductors) allow investigating contributions to charge collection spectra as a function of the particle nature, i.e. neutron, proton and muon. Coupled measurements and simulations allow to access to the detected secondary CR flux and the charge deposition pattern. Results showed that high charge level events seen on atmospheric sites can be considered as hadronic component (mainly neutrons and protons) while low charge levels and punctual events are induced by muons which are able to generate up to 3 fC in the CCD camera. Hence, thanks to double level of measurement sites, muon discrimination from other secondary particles has been investigated. Cross-comparison analyses based on CCD and neutron spectrometers operated in both station/observatory investigate secondary CR dynamic.  
  Programme 1112  
  Campaign  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved yes  
  Call Number Serial 8325  
Permanent link to this record
 

 
Author Clive R. McMahon, Fabien Roquet, Sophie Baudel, Mathieu Belbeoch, Sophie Bestley, Clint Blight, Lars Boehme, Fiona Carse, Daniel P. Costa, Michael A. Fedak, Christophe Guinet, Robert Harcourt, Emma Heslop, Mark A. Hindell, Xavier Hoenner, Kim Holland, Mellinda Holland, Fabrice R. A. Jaine, Tiphaine Jeanniard du Dot, Ian Jonsen, Theresa R. Keates, Kit M. Kovacs, Sara Labrousse, Philip Lovell, Christian Lydersen, David March, Matthew Mazloff, Megan K. McKinzie, Mônica M. C. Muelbert, Kevin O’Brien, Lachlan Phillips, Esther Portela, Jonathan Pye, Stephen Rintoul, Katsufumi Sato, Ana M. M. Sequeira, Samantha E. Simmons, Vardis M. Tsontos, Victor Turpin, Esmee van Wijk, Danny Vo, Mia Wege, Frederick Gilbert Whoriskey, Kenady Wilson, Bill Woodward doi  openurl
  Title Animal Borne Ocean Sensors – AniBOS – An Essential Component of the Global Ocean Observing System Type Journal
  Year 2021 Publication Frontiers in Marine Science Abbreviated Journal  
  Volume 8 Issue (up) Pages  
  Keywords  
  Abstract Marine animals equipped with biological and physical electronic sensors have produced long-term data streams on key marine environmental variables, hydrography, animal behavior and ecology. These data are an essential component of the Global Ocean Observing System (GOOS). The Animal Borne Ocean Sensors (AniBOS) network aims to coordinate the long-term collection and delivery of marine data streams, providing a complementary capability to other GOOS networks that monitor Essential Ocean Variables (EOVs), essential climate variables (ECVs) and essential biodiversity variables (EBVs). AniBOS augments observations of temperature and salinity within the upper ocean, in areas that are under-sampled, providing information that is urgently needed for an improved understanding of climate and ocean variability and for forecasting. Additionally, measurements of chlorophyll fluorescence and dissolved oxygen concentrations are emerging. The observations AniBOS provides are used widely across the research, modeling and operational oceanographic communities. High latitude, shallow coastal shelves and tropical seas have historically been sampled poorly with traditional observing platforms for many reasons including sea ice presence, limited satellite coverage and logistical costs. Animal-borne sensors are helping to fill that gap by collecting and transmitting in near real time an average of 500 temperature-salinity-depth profiles per animal annually and, when instruments are recovered (∼30% of instruments deployed annually, n = 103 ± 34), up to 1,000 profiles per month in these regions. Increased observations from under-sampled regions greatly improve the accuracy and confidence in estimates of ocean state and improve studies of climate variability by delivering data that refine climate prediction estimates at regional and global scales. The GOOS Observations Coordination Group (OCG) reviews, advises on and coordinates activities across the global ocean observing networks to strengthen the effective implementation of the system. AniBOS was formally recognized in 2020 as a GOOS network. This improves our ability to observe the ocean’s structure and animals that live in them more comprehensively, concomitantly improving our understanding of global ocean and climate processes for societal benefit consistent with the UN Sustainability Goals 13 and 14: Climate and Life below Water. Working within the GOOS OCG framework ensures that AniBOS is an essential component of an integrated Global Ocean Observing System.  
  Programme 1201  
  Campaign  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2296-7745 ISBN Medium  
  Area Expedition Conference  
  Notes Approved yes  
  Call Number Serial 8326  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print