Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Plateaux Romain, Bethoux Nicole, BERGERAT Françoise, Mercier De Lépinay Bernard, doi  openurl
  Title Volcano-tectonic interactions revealed by inversion of focal mechanisms: stress field insight around and beneath the Vatnajökull ice cap in Iceland Type Journal Article
  Year 2014 Publication Frontiers in Earth Science Abbreviated Journal  
  Volume 2 Issue Pages  
  Keywords  
  Abstract  
  Programme 316  
  Campaign  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (down) 2296-6463 ISBN Medium  
  Area Expedition Conference  
  Notes Approved yes  
  Call Number Serial 5364  
Permanent link to this record
 

 
Author Scott D. Chambers, Susanne Preunkert, Rolf Weller, Sang-Bum Hong, Ruhi S. Humphries, Laura Tositti, Hélène Angot, Michel Legrand, Alastair G. Williams, Alan D. Griffiths, Jagoda Crawford, Jack Simmons, Taejin J. Choi, Paul B. Krummel, Suzie Molloy, Zoë Loh, Ian Galbally, Stephen Wilson, Olivier Magand, Francesca Sprovieri, Nicola Pirrone, Aurélien Dommergue file  doi
openurl 
  Title Characterizing Atmospheric Transport Pathways to Antarctica and the Remote Southern Ocean Using Radon-222 Type Journal
  Year 2018 Publication Frontiers in Earth Science Abbreviated Journal  
  Volume 6 Issue Pages  
  Keywords Antarctica atmospheric transport MBL Mercury Ozone Radon Southern Ocean Troposphere  
  Abstract We discuss remote terrestrial influences on boundary layer air over the Southern Ocean and Antarctica, and the mechanisms by which they arise, using atmospheric radon observations as a proxy. Our primary motivation was to enhance the scientific community’s ability to understand and quantify the potential effects of pollution, nutrient or pollen transport from distant land masses to these remote, sparsely-instrumented regions. Seasonal radon characteristics are discussed at 6 stations (Macquarie Island, King Sejong, Neumayer, Dumont d’Urville, Jang Bogo and Dome Concordia) using 1-4 years of continuous observations. Context is provided for differences observed between these sites by Southern Ocean radon transects between 45-67S made by the Research Vessel Investigator. Synoptic transport of continental air within the marine boundary layer (MBL) dominated radon seasonal cycles in the mid-Southern Ocean site (Macquarie Island). MBL synoptic transport, tropospheric injection, and Antarctic outflow all contributed to the seasonal cycle at the sub-Antarctic site (King Sejong). Tropospheric subsidence and injection events delivered terrestrially-influenced air to the Southern Ocean MBL in the vicinity of the circumpolar trough (or “Polar Front”). Katabatic outflow events from Antarctica were observed to modify trace gas and aerosol characteristics of the MBL 100-200 km off the coast. Radon seasonal cycles at coastal Antarctic sites were dominated by a combination of local radon sources in summer and subsidence of terrestrially-influenced tropospheric air, whereas those on the Antarctic Plateau were primarily controlled by tropospheric subsidence. Separate characterization of long-term marine and katabatic flow air masses at Dumont d’Urville revealed monthly mean differences in summer of up to 5 ppbv in ozone and 0.3 ng m-3 in gaseous elemental mercury. These differences were largely attributed to chemical processes on the Antarctic Plateau. A comparison of our observations with some Antarctic radon simulations by global climate models over the past two decades indicated that: (i) some models overestimate synoptic transport to Antarctica in the MBL, (ii) the seasonality of the Antarctic ice sheet needs to be better represented in models, (iii) coastal Antarctic radon sources need to be taken into account, and (iv) the underestimation of radon in subsiding tropospheric air needs to be investigated.  
  Programme 1028  
  Campaign  
  Address  
  Corporate Author Thesis Bachelor's thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (down) 2296-6463 ISBN Medium  
  Area Expedition Conference  
  Notes Approved yes  
  Call Number Serial 7846  
Permanent link to this record
 

 
Author Alexey Lyubushin doi  isbn
openurl 
  Title Global Seismic Noise Entropy Type Journal
  Year 2020 Publication Frontiers in Earth Science Abbreviated Journal  
  Volume 8 Issue Pages 558  
  Keywords  
  Abstract Data of continuous records of low-frequency (periods from 2 to 1,000 min) seismic noise on a global network of 229 broadband stations located around the world for 23 years, 1997–2019, are analyzed. The daily values of the entropy of the distribution of the squares of the orthogonal wavelet coefficients are considered as an informative characteristic of noise. An auxiliary network of 50 reference points is introduced, the positions of which are determined from the clustering of station positions. For each reference point, a time series is calculated, consisting of 8,400 samples with a time step of 1 day, the values of which are determined as the medians of the entropy values at the five nearest stations that are operable during the given day. The introduction of a system of reference points makes it possible to estimate temporal and spatial changes in the correlation of noise entropy values around the world. Estimation in an annual sliding time window revealed a time interval from mid-2002 to mid-2003, when there was an abrupt change in the properties of global noise and an intensive increase in both average entropy correlations and spatial correlation scales began. This trend continues until the end of 2019, and it is interpreted as a feature of seismic noise which is connected with an increase in the intensity of the strongest earthquakes, which began with the Sumatran mega-earthquake of December 26, 2004 (M = 9.3). The values of the correlation function between the logarithm of the released seismic energy and the bursts of coherence between length of day and the entropy of seismic noise in the annual time window indicate the delay in the release of seismic energy relative to the coherence maxima. This lag is interpreted as a manifestation of the triggering effect of the irregular rotation of the Earth on the increase in global seismic hazard.  
  Programme 133  
  Campaign  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (down) 2296-6463 ISBN 2296-6463 Medium  
  Area Expedition Conference  
  Notes Approved yes  
  Call Number Serial 7889  
Permanent link to this record
 

 
Author Andreas Richter, Alexey A. Ekaykin, Matthias O. Willen, Vladimir Ya. Lipenkov, Andreas Groh, Sergey V. Popov, Mirko Scheinert, Martin Horwath, Reinhard Dietrich doi  openurl
  Title Surface Mass Balance Models Vs. Stake Observations: A Comparison in the Lake Vostok Region, Central East Antarctica Type Journal
  Year 2021 Publication Frontiers in Earth Science Abbreviated Journal  
  Volume 9 Issue Pages 388  
  Keywords  
  Abstract The surface mass balance (SMB) is very low over the vast East Antarctic Plateau, for example in the Vostok region, where the mean SMB is on the order of 20–35 kg m-2 a-1. The observation and modeling of spatio-temporal SMB variations are equally challenging in this environment. Stake measurements carried out in the Vostok region provide SMB observations over half a century (1970–2019). This unique data set is compared with SMB estimations of the regional climate models RACMO2.3p2 (RACMO) and MAR3.11 (MAR). We focus on the SMB variations over time scales from months to decades. The comparison requires a rigorous assessment of the uncertainty in the stake observations and the spatial scale dependence of the temporal SMB variations. Our results show that RACMO estimates of annual and multi-year SMB agree well with the observations. The regression slope between modelled and observed temporal variations is close to 1.0 for this model. SMB simulations by MAR are affected by a positive bias which amounts to 6 kg m-2 a-1 at Vostok station and 2 kg m-2 a-1 along two stake profiles between Lake Vostok and Ridge B. None of the models is capable to reproduce the seasonal distributions of SMB and precipitation. Model SMB estimates are used in assessing the ice-mass balance and sea-level contribution of the Antarctic Ice Sheet by the input-output method. Our results provide insights into the uncertainty contribution of the SMB models to such assessments.  
  Programme 411  
  Campaign  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (down) 2296-6463 ISBN Medium  
  Area Expedition Conference  
  Notes Approved yes  
  Call Number Serial 8030  
Permanent link to this record
 

 
Author Kévin Fourteau, Fabien Gillet-Chaulet, Patricia Martinerie, Xavier Faïn doi  openurl
  Title A Micro-Mechanical Model for the Transformation of Dry Polar Firn Into Ice Using the Level-Set Method Type Journal
  Year 2020 Publication Frontiers in Earth Science Abbreviated Journal  
  Volume 8 Issue Pages 101  
  Keywords  
  Abstract Interpretation of greenhouse gas records in polar ice cores requires a good understanding of the mechanisms controlling gas trapping in polar ice, and therefore of the processes of densification and pore closure in firn (compacted snow). Current firn densification models are based on a macroscopic description of the firn and rely on empirical laws and/or idealized geometries to obtain the equations governing the densification and pore closure. Here, we propose a physically-based methodology explicitly representing the porous structure and its evolution over time. In order to handle the complex geometry and topological changes that occur during firn densification, we rely on a Level-Set representation of the interface between the ice and the pores. Two mechanisms are considered for the displacement of the interface: (i) mass surface diffusion driven by local pore curvature and (ii) ice dislocation creep. For the latter, ice is modeled as a viscous material and the flow velocities are solutions of the Stokes equations. First applications show that the model is able to densify firn and split pores. Using the model in cold and arid conditions of the Antarctic plateau, we show that gas trapping models do not have to consider the reduced compressibility of closed pores compared to open pores in the deepest part of firns. Our results also suggest that the mechanism of curvature-driven surface diffusion does not result in pore splitting, and that ice creep has to be taken into account for pores to close. Future applications of this type of model could help quantify the evolution and closure of firn porous networks for various accumulation and temperature conditions.  
  Programme 1153  
  Campaign  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (down) 2296-6463 ISBN Medium  
  Area Expedition Conference  
  Notes Approved yes  
  Call Number Serial 8268  
Permanent link to this record
 

 
Author Federico Scoto, Gianluca Pappaccogli, Mauro Mazzola, Antonio Donateo, Roberto Salzano, Matteo Monzali, Fabrizio de Blasi, Catherine Larose, Jean-Charles Gallet, Stefano Decesari, Andrea Spolaor openurl 
  Title Automated observation of physical snowpack properties in Ny-Ålesund Type Journal
  Year 2023 Publication Frontiers in Earth Science Abbreviated Journal  
  Volume 11 Issue Pages  
  Keywords  
  Abstract The snow season in the Svalbard archipelago generally lasts 6–10 months a year and significantly impacts the regional climate, glaciers mass balance, permafrost thermal regime and ecology. Due to the lack of long-term continuous snowpack physical data, it is still challenging for the numerical snow physics models to simulate multi-layer snowpack evolution, especially for remote Arctic areas. To fill this gap, in November 2020, an automated nivometric station (ANS) was installed ∼1 km Southwest from the settlement of Ny-Ålesund (Spitzbergen, Svalbard), in a flat area over the lowland tundra. It automatically provides continuous snow data, including NIR images of the fractional snow-cover area (fSCA), snow depth (SD), internal snow temperature and liquid water content (LWC) profiles at different depths with a 10 min time resolution. Here we present the first-year record of automatic snow preliminary measurements collected between November 2020 and July 2021 together with weekly manual observations for comparison. The snow season at the ANS site lasted for 225 days with an annual net accumulation of 117 cm (392 mm of water equivalent). The LWC in the snowpack was generally low (<4%) during wintertime, nevertheless, we observed three snow-melting events between November and February 2021 and one in June 2021, connected with positive temperature and rain on snow events (ROS). In view of the foreseen future developments, the ANS is the first automated, comprehensive snowpack monitoring system in Ny-Ålesund measuring key essential climate variables needed to understand the seasonal evolution of the snow cover on land.  
  Programme 1192  
  Campaign  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (down) 2296-6463 ISBN Medium  
  Area Expedition Conference  
  Notes Approved yes  
  Call Number Serial 8530  
Permanent link to this record
 

 
Author Andrea Spolaor, Beatrice Moroni, Bartłomiej Luks, Adam Nawrot, Marco Roman, Catherine Larose, Łukasz Stachnik, Federica Bruschi, Krystyna Kozioł, Filip Pawlak, Clara Turetta, Elena Barbaro, Jean-Charles Gallet, David Cappelletti doi  openurl
  Title Investigation on the Sources and Impact of Trace Elements in the Annual Snowpack and the Firn in the Hansbreen (Southwest Spitsbergen) Type Journal
  Year 2021 Publication Frontiers in Earth Science Abbreviated Journal  
  Volume 8 Issue Pages  
  Keywords  
  Abstract We present a thorough evaluation of the water soluble fraction of the trace element composition (Ca, Sr, Mg, Na, K, Li, B, Rb, U, Ni, Co, As, Cs, Cd, Mo, Se, Eu, Ba, V, Ge, Ga, Cr, Cr, P, Ti, Mn, Zr, Ce, Zn, Fe, Gd, Y, Pb, Bi, Yb, Al, Nb, Er, Nd, Dy, Sm, Ho, Th, La, Lu, Tm, Pr, Tb, Fe, In, Tl) and their fluxes in the annual snowpack and the firn of the Hansbreen (a tidewater glacier terminating in the Hornsund fjord, southwest Spitsbergen). The trace element samples were obtained from a 3 m deep snow pit dug at the plateau of the glacier (450 m a.s.l.), and from a 2 m deep firn core collected from the bottom of the snow pit. The comparison of elemental fluxes and enrichment factors allowed us to constrain specific summer and wintertime deposition patterns of water soluble trace elements in the southern part of the Svalbard archipelago. Our results suggest that the chemical composition of the Hansbreen (and likely other glaciers where the summit is close to the equilibrium line) is mainly affected by summertime deposition of trace elements from local sources and some volatile elements, which may be transported into the Arctic when polar vortex is weak. The melting of the annual snowpack seems to have a minor influence on the overall chemical signature of the glacier ice.  
  Programme 1192  
  Campaign  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (down) 2296-6463 ISBN Medium  
  Area Expedition Conference  
  Notes Approved yes  
  Call Number Serial 8606  
Permanent link to this record
 

 
Author Marine DUC et Béatrice COLLIGNON openurl 
  Title Expériences de l'enseignement supérieur et trajectoires étudiantes Type Report
  Year 2019 Publication Lettres de l'inshs Abbreviated Journal  
  Volume mars Issue Pages 24-26  
  Keywords  
  Abstract  
  Programme 1213  
  Campaign  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (down) 2272-0243 ISBN Medium  
  Area Expedition Conference  
  Notes Approved yes  
  Call Number Serial 7559  
Permanent link to this record
 

 
Author Marine DUC file  openurl
  Title (Se) loger et étudier à Nuuk Type Journal
  Year 2019 Publication Urbanités Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract  
  Programme 1213  
  Campaign  
  Address  
  Corporate Author Thesis Bachelor's thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (down) 2268-9613 ISBN Medium  
  Area Expedition Conference  
  Notes http://www.revue-urbanites.fr/ Approved yes  
  Call Number Serial 5684  
Permanent link to this record
 

 
Author Dommergue, A., Vogel, N., Ferrari, C.P., Magand, O., Barret, M. file  doi
openurl 
  Title Preliminary results from a continuous record of atmospheric gaseous mercury at the coastal station Dumont d’Urville in Antarctica. Type Conference - International - Article with Reading Comitee
  Year 2013 Publication E3S Web of Conferences Abbreviated Journal  
  Volume 1 Issue Pages  
  Keywords  
  Abstract  
  Programme 1028  
  Campaign  
  Address  
  Corporate Author Thesis Bachelor's thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (down) 2267-1242 ISBN Medium  
  Area Expedition Conference  
  Notes Approved yes  
  Call Number Serial 4557  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print