Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Fréville H, Brun E, Picard G, Tatarinova N, Arnaud L, Lanconelli C, Reijmer C, van den Broeke M, doi  openurl
  Title Using MODIS land surface temperatures and the Crocus snow model to understand the warm bias of ERA-Interim reanalyses at the surface in Antarctica Type Journal Article
  Year 2014 Publication The Cryosphere Abbreviated Journal TC  
  Volume 8 Issue 4 Pages 1361-1373  
  Keywords  
  Abstract based on CALVA-snow activities  
  Programme 1110  
  Campaign  
  Address  
  Corporate Author Thesis  
  Publisher Copernicus Publications Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (down) 1994-0424 ISBN Medium  
  Area Expedition Conference  
  Notes Approved yes  
  Call Number Serial 5206  
Permanent link to this record
 

 
Author Picard G, Royer A, Arnaud L, Fily M, doi  openurl
  Title Influence of meter-scale wind-formed features on the variability of the microwave brightness temperature around Dome C in Antarctica Type Journal Article
  Year 2014 Publication The Cryosphere Abbreviated Journal TC  
  Volume 8 Issue 3 Pages 1105-1119  
  Keywords  
  Abstract based on BIPOL and CALVA-snow  
  Programme 1110  
  Campaign  
  Address  
  Corporate Author Thesis  
  Publisher Copernicus Publications Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (down) 1994-0424 ISBN Medium  
  Area Expedition Conference  
  Notes Approved yes  
  Call Number Serial 5207  
Permanent link to this record
 

 
Author Libois Q, Picard G, Arnaud L, Dumont M, Lafaysse M, Morin S, Lefebvre E, doi  openurl
  Title Summertime evolution of snow specific surface area close to the surface on the Antarctic Plateau Type Journal Article
  Year 2015 Publication The Cryosphere Abbreviated Journal  
  Volume 9 Issue 4 Pages 4499-4538  
  Keywords  
  Abstract On the Antarctic Plateau, snow specific surface area (SSA) close to the surface shows complex variations at daily to seasonal scales which affect the surface albedo and in turn the surface energy budget of the ice sheet. While snow metamorphism, precipitation and strong wind events are known to drive SSA variations, usually in opposite ways, their relative contributions remain unclear. Here, a comprehensive set of SSA observations at Dome C is analysed with respect to meteorological conditions to assess the respective roles of these factors. The results show an average two-to-three-fold SSA decrease from October to February in the topmost 10 cm, in response to the increase of air temperature and absorption of solar radiation in the snowpack during spring and summer. Surface SSA is also characterised by significant daily to weekly variations, due to the deposition of small crystals with SSA up to 100 m2 kg−1 onto the surface during snowfall and blowing snow events. To complement these field observations, the detailed snowpack model Crocus is used to simulate SSA, with the intent to further investigate the previously found correlation between inter-annual variability of summer SSA decrease and summer precipitation amount. To this end, Crocus parameterizations have been adapted to Dome C conditions, and the model was forced by ERA-Interim reanalysis. It successfully matches the observations at daily to seasonal time scales, except for few cases when snowfalls are not captured by the reanalysis. On the contrary, the inter-annual variability of summer SSA decrease is poorly simulated when compared to 14 years of microwave satellite data sensititve to the near surface SSA. A simulation with disabled summer precipitation confirms the weak influence in the model of the precipitation on metamorphism, with only 6 % enhancement. However we found that disabling strong wind events in the model is sufficient to reconciliate the simulations with the observations. This suggests that Crocus reproduces well the contributions of metamorphism and precipitation on surface SSA, but that snow compaction by the wind might be overestimated in the model.  
  Programme 1110  
  Campaign  
  Address  
  Corporate Author Thesis Bachelor's thesis  
  Publisher Copernicus GmbH Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (down) 1994-0424 ISBN Medium  
  Area Expedition Conference  
  Notes Approved yes  
  Call Number Serial 6128  
Permanent link to this record
 

 
Author Champollion N, Picard G, Arnaud L, Lefebvre E, Fily M, doi  openurl
  Title Hoar crystal development and disappearance at Dome C, Antarctica: observation by near-infrared photography and passive microwave satellite Type Journal Article
  Year 2013 Publication The Cryosphere Abbreviated Journal TC  
  Volume 7 Issue 4 Pages 1247-1262  
  Keywords  
  Abstract Hoar crystals episodically cover the snow surface in Antarctica and affect the roughness and reflective properties of the airsnow interface. However, little is known about their evolution and the processes responsible for their development and disappearance despite a probable influence on the surface mass balance and energy budget. To investigate hoar evolution, we use continuous observations of the surface by in situ near-infrared photography and by passive microwave remote sensing at Dome C in Antarctica. From the photography data, we retrieved a daily indicator of the presence/absence of hoar crystals using a texture analysis algorithm. The analysis of this 2 yr long time series shows that Dome C surface is covered almost half of the time by hoar. The development of hoar crystals takes a few days and seems to occur whatever the meteorological conditions. In contrast, the disappearance of hoar is rapid (a few hours) and coincident with either strong winds or with moderate winds associated with a change in wind direction from southwest (the prevailing direction) to southeast. From the microwave satellite data, we computed the polarisation ratio (i.e. horizontal over vertical polarised brightness temperatures), an indicator known to be sensitive to hoar in Greenland. Photography data and microwave polarisation ratio are correlated, i.e. high values of polarisation ratio which theoretically correspond to low snow density values near the surface are associated with the presence of hoar crystals in the photography data. Satellite data over nearly ten years (20022011) confirm that a strong decrease of the polarisation ratio (i.e. signature of hoar disappearance) is associated with an increase of wind speed or a change in wind direction from the prevailing direction. The photography data provides, in addition, evidence of interactions between hoar and snowfall. Further adding the combined influence of wind speed and wind direction results in a complex picture of the snowatmosphere interactions in Antarctica which deserves further quantification and modelling.  
  Programme 1110  
  Campaign  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (down) 1994-0424 ISBN Medium  
  Area Expedition Conference  
  Notes Approved yes  
  Call Number Serial 4489  
Permanent link to this record
 

 
Author J. C. Stroeve, S. Jenouvrier, G. G. Campbell, C. Barbraud, K. Delord doi  isbn
openurl 
  Title Mapping and assessing variability in the Antarctic marginal ice zone, pack ice and coastal polynyas in two sea ice algorithms with implications on breeding success of snow petrels Type Journal
  Year 2016 Publication The Cryosphere Abbreviated Journal  
  Volume 10 Issue 4 Pages 1823-1843  
  Keywords  
  Abstract Sea ice variability within the marginal ice zone (MIZ) and polynyas plays an important role for phytoplankton productivity and krill abundance. Therefore, mapping their spatial extent as well as seasonal and interannual variability is essential for understanding how current and future changes in these biologically active regions may impact the Antarctic marine ecosystem. Knowledge of the distribution of MIZ, consolidated pack ice and coastal polynyas in the total Antarctic sea ice cover may also help to shed light on the factors contributing towards recent expansion of the Antarctic ice cover in some regions and contraction in others. The long-term passive microwave satellite data record provides the longest and most consistent record for assessing the proportion of the sea ice cover that is covered by each of these ice categories. However, estimates of the amount of MIZ, consolidated pack ice and polynyas depend strongly on which sea ice algorithm is used. This study uses two popular passive microwave sea ice algorithms, the NASA Team and Bootstrap, and applies the same thresholds to the sea ice concentrations to evaluate the distribution and variability in the MIZ, the consolidated pack ice and coastal polynyas. Results reveal that the seasonal cycle in the MIZ and pack ice is generally similar between both algorithms, yet the NASA Team algorithm has on average twice the MIZ and half the consolidated pack ice area as the Bootstrap algorithm. Trends also differ, with the Bootstrap algorithm suggesting statistically significant trends towards increased pack ice area and no statistically significant trends in the MIZ. The NASA Team algorithm on the other hand indicates statistically significant positive trends in the MIZ during spring. Potential coastal polynya area and amount of broken ice within the consolidated ice pack are also larger in the NASA Team algorithm. The timing of maximum polynya area may differ by as much as 5 months between algorithms. These differences lead to different relationships between sea ice characteristics and biological processes, as illustrated here with the breeding success of an Antarctic seabird.  
  Programme 109  
  Campaign  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (down) 1994-0424 ISBN 1994-0424 Medium  
  Area Expedition Conference  
  Notes Approved yes  
  Call Number Serial 6627  
Permanent link to this record
 

 
Author S. Goursaud, V. Masson-Delmotte, V. Favier, S. Preunkert, M. Fily, H. Gallée, B. Jourdain, M. Legrand, O. Magand, B. Minster, M. Werner file  doi
isbn  openurl
  Title A 60-year ice-core record of regional climate from Adélie Land, coastal Antarctica Type Book Chapter
  Year 2017 Publication The Cryosphere Abbreviated Journal  
  Volume 11 Issue 1 Pages 343-362  
  Keywords  
  Abstract A 22.4 m-long shallow firn core was extracted during the 2006/2007 field season from coastal Adélie Land. Annual layer counting based on subannual analyses of δ18O and major chemical components was combined with 5 reference years associated with nuclear tests and non-retreat of summer sea ice to build the initial ice-core chronology (1946–2006), stressing uncertain counting for 8 years. We focus here on the resulting δ18O and accumulation records. With an average value of 21.8 ± 6.9 cm w.e. yr−1, local accumulation shows multi-decadal variations peaking in the 1980s, but no long-term trend. Similar results are obtained for δ18O, also characterised by a remarkably low and variable amplitude of the seasonal cycle. The ice-core records are compared with regional records of temperature, stake area accumulation measurements and variations in sea-ice extent, and outputs from two models nudged to ERA (European Reanalysis) atmospheric reanalyses: the high-resolution atmospheric general circulation model (AGCM), including stable water isotopes ECHAM5-wiso (European Centre Hamburg model), and the regional atmospheric model Modèle Atmosphérique Régional (AR). A significant linear correlation is identified between decadal variations in δ18O and regional temperature. No significant relationship appears with regional sea-ice extent. A weak and significant correlation appears with Dumont d'Urville wind speed, increasing after 1979. The model-data comparison highlights the inadequacy of ECHAM5-wiso simulations prior to 1979, possibly due to the lack of data assimilation to constrain atmospheric reanalyses. Systematic biases are identified in the ECHAM5-wiso simulation, such as an overestimation of the mean accumulation rate and its interannual variability, a strong cold bias and an underestimation of the mean δ18O value and its interannual variability. As a result, relationships between simulated δ18O and temperature are weaker than observed. Such systematic precipitation and temperature biases are not displayed by MAR, suggesting that the model resolution plays a key role along the Antarctic ice sheet coastal topography. Interannual variations in ECHAM5-wiso temperature and precipitation accurately capture signals from meteorological data and stake observations and are used to refine the initial ice-core chronology within 2 years. After this adjustment, remarkable positive (negative) δ18O anomalies are identified in the ice-core record and the ECHAM5-wiso simulation in 1986 and 2002 (1998–1999), respectively. Despite uncertainties associated with post-deposition processes and signal-to-noise issues, in one single coastal ice-core record, we conclude that the S1C1 core can correctly capture major annual anomalies in δ18O as well as multi-decadal variations. These findings highlight the importance of improving the network of coastal high-resolution ice-core records, and stress the skills and limitations of atmospheric models for accumulation and δ18O in coastal Antarctic areas. This is particularly important for the overall East Antarctic ice sheet mass balance.  
  Programme 411,414,1154  
  Campaign  
  Address  
  Corporate Author Thesis Bachelor's thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (down) 1994-0424 ISBN 1994-0424 Medium  
  Area Expedition Conference  
  Notes Approved yes  
  Call Number Serial 6672  
Permanent link to this record
 

 
Author J. Grazioli, C. Genthon, B. Boudevillain, C. Duran-Alarcon, M. Del Guasta, J.-B. Madeleine, A. Berne doi  isbn
openurl 
  Title Measurements of precipitation in Dumont d'Urville, Adélie Land, East Antarctica Type Journal
  Year 2017 Publication The Cryosphere Abbreviated Journal  
  Volume 11 Issue 4 Pages 1797-1811  
  Keywords  
  Abstract The first results of a campaign of intensive observation of precipitation in Dumont d'Urville, Antarctica, are presented. Several instruments collected data from November 2015 to February 2016 or longer, including a polarimetric radar (MXPol), a Micro Rain Radar (MRR), a weighing gauge (Pluvio2), and a Multi-Angle Snowflake Camera (MASC). These instruments collected the first ground-based measurements of precipitation in the region of Adélie Land (Terre Adélie), including precipitation microphysics. Microphysical observations during the austral summer 2015/2016 showed that, close to the ground level, aggregates are the dominant hydrometeor type, together with small ice particles (mostly originating from blowing snow), and that riming is a recurring process. Eleven percent of the measured particles were fully developed graupel, and aggregates had a mean riming degree of about 30 %. Spurious precipitation in the Pluvio2 measurements in windy conditions, leading to phantom accumulations, is observed and partly removed through synergistic use of MRR data. The yearly accumulated precipitation of snow (300 m above ground), obtained by means of a local conversion relation of MRR data, trained on the Pluvio2 measurement of the summer period, is estimated to be 815 mm of water equivalent, with a confidence interval ranging between 739.5 and 989 mm. Data obtained in previous research from satellite-borne radars, and the ERA-Interim reanalysis of the European Centre for Medium-Range Weather Forecasts (ECMWF) provide lower yearly totals: 655 mm for ERA-Interim and 679 mm for the climatological data over DDU. ERA-Interim overestimates the occurrence of low-intensity precipitation events especially in summer, but it compensates for them by underestimating the snowfall amounts carried by the most intense events. Overall, this paper provides insightful examples of the added values of precipitation monitoring in Antarctica with a synergistic use of in situ and remote sensing measurements.  
  Programme 1143  
  Campaign  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (down) 1994-0424 ISBN 1994-0424 Medium  
  Area Expedition Conference  
  Notes Approved yes  
  Call Number Serial 6673  
Permanent link to this record
 

 
Author E. Berthier, C. Vincent, E. Magnússon, Á. Þ. Gunnlaugsson, P. Pitte, E. Le Meur, M. Masiokas, L. Ruiz, F. Pálsson, J. M. C. Belart, P. Wagnon doi  isbn
openurl 
  Title Glacier topography and elevation changes derived from Pléiades sub-meter stereo images Type Journal
  Year 2014 Publication The Cryosphere Abbreviated Journal  
  Volume 8 Issue 6 Pages 2275-2291  
  Keywords  
  Abstract In response to climate change, most glaciers are losing mass and hence contribute to sea-level rise. Repeated and accurate mapping of their surface topography is required to estimate their mass balance and to extrapolate/calibrate sparse field glaciological measurements. In this study we evaluate the potential of sub-meter stereo imagery from the recently launched Pléiades satellites to derive digital elevation models (DEMs) of glaciers and their elevation changes. Our five evaluation sites, where nearly simultaneous field measurements were collected, are located in Iceland, the European Alps, the central Andes, Nepal and Antarctica. For Iceland, the Pléiades DEM is also compared to a lidar DEM. The vertical biases of the Pléiades DEMs are less than 1 m if ground control points (GCPs) are used, but reach up to 7 m without GCPs. Even without GCPs, vertical biases can be reduced to a few decimetres by horizontal and vertical co-registration of the DEMs to reference altimetric data on ice-free terrain. Around these biases, the vertical precision of the Pléiades DEMs is ±1 m and even ±0.5 m on the flat glacier tongues (1σ confidence level). Similar precision levels are obtained in the accumulation areas of glaciers and in Antarctica. We also demonstrate the high potential of Pléiades DEMs for measuring seasonal, annual and multi-annual elevation changes with an accuracy of 1 m or better if cloud-free images are available. The negative region-wide mass balances of glaciers in the Mont-Blanc area (−1.04 ± 0.23 m a−1 water equivalent, w.e.) are revealed by differencing Satellite pour l'Observation de la Terre 5 (SPOT 5) and Pléiades DEMs acquired in August 2003 and 2012, confirming the accelerated glacial wastage in the European Alps.  
  Programme 1053  
  Campaign  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (down) 1994-0424 ISBN 1994-0424 Medium  
  Area Expedition Conference  
  Notes Approved yes  
  Call Number Serial 6792  
Permanent link to this record
 

 
Author F. Domine, M. Barrere, D. Sarrazin doi  isbn
openurl 
  Title Seasonal evolution of the effective thermal conductivity of the snow and the soil in high Arctic herb tundra at Bylot Island, Canada Type Journal
  Year 2016 Publication The Cryosphere Abbreviated Journal  
  Volume 10 Issue 6 Pages 2573-2588  
  Keywords  
  Abstract The values of the snow and soil thermal conductivity, ksnow and ksoil, strongly impact the thermal regime of the ground in the Arctic, but very few data are available to test model predictions for these variables. We have monitored ksnow and ksoil using heated needle probes at Bylot Island in the Canadian High Arctic (73° N, 80° W) between July 2013 and July 2015. Few ksnow data were obtained during the 2013–2014 winter, because little snow was present. During the 2014–2015 winter ksnow monitoring at 2, 12 and 22 cm heights and field observations show that a depth hoar layer with ksnow around 0.02 W m−1 K−1 rapidly formed. At 12 and 22 cm, wind slabs with ksnow around 0.2 to 0.3 W m−1 K−1 formed. The monitoring of ksoil at 10 cm depth shows that in thawed soil ksoil was around 0.7 W m−1 K−1, while in frozen soil it was around 1.9 W m−1 K−1. The transition between both values took place within a few days, with faster thawing than freezing and a hysteresis effect evidenced in the thermal conductivity–liquid water content relationship. The fast transitions suggest that the use of a bimodal distribution of ksoil for modelling may be an interesting option that deserves further testing. Simulations of ksnow using the snow physics model Crocus were performed. Contrary to observations, Crocus predicts high ksnow values at the base of the snowpack (0.12–0.27 W m−1 K−1) and low ones in its upper parts (0.02–0.12 W m−1 K−1). We diagnose that this is because Crocus does not describe the large upward water vapour fluxes caused by the temperature gradient in the snow and soil. These fluxes produce mass transfer between the soil and lower snow layers to the upper snow layers and the atmosphere. Finally, we discuss the importance of the structure and properties of the Arctic snowpack on subnivean life, as species such as lemmings live under the snow most of the year and must travel in the lower snow layer in search of food.  
  Programme 1042  
  Campaign  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (down) 1994-0424 ISBN 1994-0424 Medium  
  Area Expedition Conference  
  Notes Approved yes  
  Call Number Serial 6907  
Permanent link to this record
 

 
Author Berthier E, Vincent C, Magnússon E, Gunnlaugsson Á Þ, Pitte P, Le Meur E, Masiokas M, Ruiz L, Pálsson F, Belart J M C, Wagnon P, doi  openurl
  Title Glacier topography and elevation changes derived from Pléiades sub-meter stereo images Type Journal Article
  Year 2014 Publication The Cryosphere Abbreviated Journal 1994-0416  
  Volume 8 Issue 6 Pages 2275-2291  
  Keywords  
  Abstract In response to climate change, most glaciers are losing mass and hence contribute to sea-level rise. Repeated and accurate mapping of their surface topography is required to estimate their mass balance and to extrapolate/calibrate sparse field glaciological measurements. In this study we evaluate the potential of sub-meter stereo imagery from the recently launched Pléiades satellites to derive digital elevation models (DEMs) of glaciers and their elevation changes. Our five evaluation sites, where nearly simultaneous field measurements were collected, are located in Iceland, the European Alps, the central Andes, Nepal and Antarctica. For Iceland, the Pléiades DEM is also compared to a lidar DEM. The vertical biases of the Pléiades DEMs are less than 1 m if ground control points (GCPs) are used, but reach up to 7 m without GCPs. Even without GCPs, vertical biases can be reduced to a few decimetres by horizontal and vertical co-registration of the DEMs to reference altimetric data on ice-free terrain. Around these biases, the vertical precision of the Pléiades DEMs is ±1 m and even ±0.5 m on the flat glacier tongues (1σ confidence level). Similar precision levels are obtained in the accumulation areas of glaciers and in Antarctica. We also demonstrate the high potential of Pléiades DEMs for measuring seasonal, annual and multi-annual elevation changes with an accuracy of 1 m or better if cloud-free images are available. The negative region-wide mass balances of glaciers in the Mont-Blanc area (−1.04 ± 0.23 m a−1 water equivalent, w.e.) are revealed by differencing Satellite pour l'Observation de la Terre 5 (SPOT 5) and Pléiades DEMs acquired in August 2003 and 2012, confirming the accelerated glacial wastage in the European Alps.  
  Programme 1053  
  Campaign  
  Address  
  Corporate Author Thesis  
  Publisher Copernicus GmbH Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (down) 1994-0416 ISBN Medium  
  Area Expedition Conference  
  Notes Approved yes  
  Call Number Serial 5868  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print