|   | 
Details
   web
Records
Author Karl-Ludwig Klein
Title Radio Astronomical Tools for the Study of Solar Energetic Particles II.Time-Extended Acceleration at Subrelativistic and Relativistic Energies Type Journal
Year 2021 Publication Frontiers in Astronomy and Space Sciences Abbreviated Journal
Volume 7 Issue Pages 93
Keywords
Abstract Solar energetic particle (SEP) events are commonly separated in two categories: numerous “impulsive” events of relatively short duration, and a few “gradual” events, where SEP-intensities may stay enhanced over several days at energies up to several tens of MeV. In some gradual events the SEP spectrum extends to relativistic energies (>1 GeV), over shorter durations. The two categories are strongly related to an idea developed in the 1960s based on radio observations: Type III bursts, which were addressed in a companion chapter, outline impulsive acceleration of electrons to subrelativistic energies, while the large and the relativistic SEP events were ascribed to a second acceleration process. At radio wavelengths, typical counterparts were bursts emitted by electrons accelerated at coronal shock waves (type II bursts) and by electron populations in large-scale closed coronal structures (type IV bursts). Both burst types are related to coronal mass ejections (CMEs). Type II bursts from metric to kilometric wavelengths tend to accompany large SEP events, which is widely considered as a confirmation that CME-driven shocks accelerate the SEPs. But type II bursts, especially those related to SEP events, are most often accompanied by type IV bursts, where the electrons are rather accelerated in the wake of the CME. Individual event studies suggest that although the CME shock is the most plausible accelerator of SEPs up to some yet unknown limiting energy, the relativistic SEP events show time structure that rather points to coronal acceleration related to type IV bursts. This chapter addresses the question what type II bursts tell us about coronal shock waves and how type II and type IV radio bursts are related with relativistic proton signatures as seen by particle detectors on the Earth and by their gamma-ray emission in the solar atmosphere, focusing on two relativistic SEP events, on 2005 Jan 20 and 2017 Sep 10. The importance of radio emissions as a complement to the upcoming SEP observations from close to the Sun is underlined.
Programme 227
Campaign
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (down) 2296-987X ISBN Medium
Area Expedition Conference
Notes Approved yes
Call Number Serial 7777
Permanent link to this record
 

 
Author Karl-Ludwig Klein
Title Radio Astronomical Tools for the Study of Solar Energetic Particles I. Correlations and Diagnostics of Impulsive Acceleration and Particle Propagation Type Journal
Year 2021 Publication Frontiers in Astronomy and Space Sciences Abbreviated Journal
Volume 7 Issue Pages 105
Keywords
Abstract Solar energetic particles (SEPs) are sporadically ejected from the Sun during flares and coronal mass ejections. They are of major astrophysical interest, because the proximity of the Sun allows for detailed multi-messenger studies. They affect space weather due to interactions with electronics, with the Earth’s atmosphere, and with humans if they leave the protective shield of the magnetosphere of the Earth. Since early studies in the 1950s, starting with particle detectors on the ground, SEP events have been related to radio bursts. Two subjects are addressed in this chapter: attempts to establish quantitative correlations between SEPs and microwave bursts produced by gyro synchrotron radiation of mildly relativistic electrons, and the information derived from type III radio bursts on impulsive processes of particle acceleration and the coronal and interplanetary propagation. Type III radio bursts produced by electron beams on open magnetic field lines have a wide range of applications, including the identification of acceleration regions, the identification of confined particle acceleration with coronal signatures, but no SEPs, and the paths that the electrons, and energetic charged particles in general, take to travel from the low corona to the Heliosphere in case they escape. Simple scenarios of coronal particle acceleration are confirmed in relatively simple and short events. But the comparison with particle transport models shows that longer and delayed acceleration episodes exist especially in large SEP events. They will be discussed in a companion chapter.
Programme 227
Campaign
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (down) 2296-987X ISBN Medium
Area Expedition Conference
Notes Approved yes
Call Number Serial 6775
Permanent link to this record
 

 
Author Clive R. McMahon, Fabien Roquet, Sophie Baudel, Mathieu Belbeoch, Sophie Bestley, Clint Blight, Lars Boehme, Fiona Carse, Daniel P. Costa, Michael A. Fedak, Christophe Guinet, Robert Harcourt, Emma Heslop, Mark A. Hindell, Xavier Hoenner, Kim Holland, Mellinda Holland, Fabrice R. A. Jaine, Tiphaine Jeanniard du Dot, Ian Jonsen, Theresa R. Keates, Kit M. Kovacs, Sara Labrousse, Philip Lovell, Christian Lydersen, David March, Matthew Mazloff, Megan K. McKinzie, Mônica M. C. Muelbert, Kevin O’Brien, Lachlan Phillips, Esther Portela, Jonathan Pye, Stephen Rintoul, Katsufumi Sato, Ana M. M. Sequeira, Samantha E. Simmons, Vardis M. Tsontos, Victor Turpin, Esmee van Wijk, Danny Vo, Mia Wege, Frederick Gilbert Whoriskey, Kenady Wilson, Bill Woodward
Title Animal Borne Ocean Sensors – AniBOS – An Essential Component of the Global Ocean Observing System Type Journal
Year 2021 Publication Frontiers in Marine Science Abbreviated Journal
Volume 8 Issue Pages
Keywords
Abstract Marine animals equipped with biological and physical electronic sensors have produced long-term data streams on key marine environmental variables, hydrography, animal behavior and ecology. These data are an essential component of the Global Ocean Observing System (GOOS). The Animal Borne Ocean Sensors (AniBOS) network aims to coordinate the long-term collection and delivery of marine data streams, providing a complementary capability to other GOOS networks that monitor Essential Ocean Variables (EOVs), essential climate variables (ECVs) and essential biodiversity variables (EBVs). AniBOS augments observations of temperature and salinity within the upper ocean, in areas that are under-sampled, providing information that is urgently needed for an improved understanding of climate and ocean variability and for forecasting. Additionally, measurements of chlorophyll fluorescence and dissolved oxygen concentrations are emerging. The observations AniBOS provides are used widely across the research, modeling and operational oceanographic communities. High latitude, shallow coastal shelves and tropical seas have historically been sampled poorly with traditional observing platforms for many reasons including sea ice presence, limited satellite coverage and logistical costs. Animal-borne sensors are helping to fill that gap by collecting and transmitting in near real time an average of 500 temperature-salinity-depth profiles per animal annually and, when instruments are recovered (∼30% of instruments deployed annually, n = 103 ± 34), up to 1,000 profiles per month in these regions. Increased observations from under-sampled regions greatly improve the accuracy and confidence in estimates of ocean state and improve studies of climate variability by delivering data that refine climate prediction estimates at regional and global scales. The GOOS Observations Coordination Group (OCG) reviews, advises on and coordinates activities across the global ocean observing networks to strengthen the effective implementation of the system. AniBOS was formally recognized in 2020 as a GOOS network. This improves our ability to observe the ocean’s structure and animals that live in them more comprehensively, concomitantly improving our understanding of global ocean and climate processes for societal benefit consistent with the UN Sustainability Goals 13 and 14: Climate and Life below Water. Working within the GOOS OCG framework ensures that AniBOS is an essential component of an integrated Global Ocean Observing System.
Programme 1201
Campaign
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (down) 2296-7745 ISBN Medium
Area Expedition Conference
Notes Approved yes
Call Number Serial 8326
Permanent link to this record
 

 
Author Anne-Sophie Bonnet-Lebrun, Maria P. Dias, Richard A. Phillips, José P. Granadeiro, M. de L. Brooke, Olivier Chastel, Thomas A. Clay, Annette L. Fayet, Olivier Gilg, Jacob González-Solís, Tim Guilford, Sveinn A. Hanssen, April Hedd, Audrey Jaeger, Johannes Krietsch, Johannes Lang, Matthieu Le Corre, Teresa Militão, Børge Moe, William A. Montevecchi, Hans-Ulrich Peter, Patrick Pinet, Matt J. Rayner, Tim Reid, José Manuel Reyes-González, Peter G. Ryan, Paul M. Sagar, Niels M. Schmidt, David R. Thompson, Rob van Bemmelen, Yutaka Watanuki, Henri Weimerskirch, Takashi Yamamoto, Paulo Catry
Title Seabird Migration Strategies: Flight Budgets, Diel Activity Patterns, and Lunar Influence Type Journal
Year 2021 Publication Frontiers in Marine Science Abbreviated Journal
Volume 8 Issue Pages
Keywords
Abstract Every year, billions of birds undertake extensive migrations between breeding and non-breeding areas, facing challenges that require behavioural adjustments, particularly to flight timing and duration. Such adjustments in daily activity patterns and the influence of extrinsic factors (e.g., environmental conditions, moonlight) have received much more research attention in terrestrial than marine migrants. Taking advantage of the widespread deployment in recent decades of combined light-level geolocator-immersion loggers, we investigated diel organisation and influence of the moon on flight activities during the non-breeding season of 21 migrant seabird species from a wide taxonomic range (6 families, 3 orders). Migrant seabirds regularly stopped (to either feed or rest) during migration, unlike some terrestrial and wetland birds which fly non-stop. We found an overall increase for most seabird species in time in flight and, for several species, also in flight bout duration, during migration compared to when resident at the non-breeding grounds. Additionally, several nocturnal species spent more of the day in flight during migration than at non-breeding areas, and vice versa for diurnal species. Nocturnal time in flight tended to increase during full moon, both during migration and at the non-breeding grounds, depending on species. Our study provides an extensive overview of activity patterns of migrant seabirds, paving the way for further research on the underlying mechanisms and drivers.
Programme 330,1036
Campaign
Address
Corporate Author Thesis Bachelor's thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (down) 2296-7745 ISBN Medium
Area Expedition Conference
Notes Approved yes
Call Number Serial 8417
Permanent link to this record
 

 
Author Rob Harcourt, Mark A. Hindell, Clive R. McMahon, Kimberly T. Goetz, Jean-Benoit Charrassin, Karine Heerah, Rachel Holser, Ian D. Jonsen, Michelle R. Shero, Xavier Hoenner, Rose Foster, Baukje Lenting, Esther Tarszisz, Matthew Harry Pinkerton
Title Regional Variation in Winter Foraging Strategies by Weddell Seals in Eastern Antarctica and the Ross Sea Type Journal
Year 2021 Publication Frontiers in Marine Science Abbreviated Journal
Volume 8 Issue Pages
Keywords
Abstract The relative importance of intrinsic and extrinsic determinants of animal foraging is often difficult to quantify. The most southerly breeding mammal, the Weddell seal, remains in the Antarctic pack-ice year-round. We compared Weddell seals tagged at three geographically and hydrographically distinct locations in East Antarctica (Prydz Bay, Terre Adélie, and the Ross Sea) to quantify the role of individual variability and habitat structure in winter foraging behaviour. Most Weddell seals remained in relatively small areas close to the coast throughout the winter, but some dispersed widely. Individual utilisation distributions (UDi, a measure of the total area used by an individual seal) ranged from 125 to 20,825 km2. This variability was not due to size or sex but may be due to other intrinsic states for example reproductive condition or personality. The type of foraging (benthic vs. pelagic) varied from 56.6 ± 14.9% benthic dives in Prydz Bay through 42.1 ± 9.4% Terre Adélie to only 25.1 ± 8.7% in the Ross Sea reflecting regional hydrographic structure. The probability of benthic diving was less likely the deeper the ocean. Ocean topography was also influential at the population level; seals from Terre Adélie, with its relatively narrow continental shelf, had a core (50%) UD of only 200 km2, considerably smaller than the Ross Sea (1650 km2) and Prydz Bay (1700 km2). Sea ice concentration had little influence on the time the seals spent in shallow coastal waters, but in deeper offshore water they used areas of higher ice concentration. Marine Protected Areas (MPAs) in the Ross Sea encompass all the observed Weddell seal habitat, and future MPAs that include the Antarctic continental shelf are likely to effectively protect key Weddell seal habitat.
Programme 1182
Campaign
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (down) 2296-7745 ISBN 2296-7745 Medium
Area Expedition Conference
Notes Approved yes
Call Number Serial 8609
Permanent link to this record
 

 
Author Andreas Richter, Alexey A. Ekaykin, Matthias O. Willen, Vladimir Ya. Lipenkov, Andreas Groh, Sergey V. Popov, Mirko Scheinert, Martin Horwath, Reinhard Dietrich
Title Surface Mass Balance Models Vs. Stake Observations: A Comparison in the Lake Vostok Region, Central East Antarctica Type Journal
Year 2021 Publication Frontiers in Earth Science Abbreviated Journal
Volume 9 Issue Pages 388
Keywords
Abstract The surface mass balance (SMB) is very low over the vast East Antarctic Plateau, for example in the Vostok region, where the mean SMB is on the order of 20–35 kg m-2 a-1. The observation and modeling of spatio-temporal SMB variations are equally challenging in this environment. Stake measurements carried out in the Vostok region provide SMB observations over half a century (1970–2019). This unique data set is compared with SMB estimations of the regional climate models RACMO2.3p2 (RACMO) and MAR3.11 (MAR). We focus on the SMB variations over time scales from months to decades. The comparison requires a rigorous assessment of the uncertainty in the stake observations and the spatial scale dependence of the temporal SMB variations. Our results show that RACMO estimates of annual and multi-year SMB agree well with the observations. The regression slope between modelled and observed temporal variations is close to 1.0 for this model. SMB simulations by MAR are affected by a positive bias which amounts to 6 kg m-2 a-1 at Vostok station and 2 kg m-2 a-1 along two stake profiles between Lake Vostok and Ridge B. None of the models is capable to reproduce the seasonal distributions of SMB and precipitation. Model SMB estimates are used in assessing the ice-mass balance and sea-level contribution of the Antarctic Ice Sheet by the input-output method. Our results provide insights into the uncertainty contribution of the SMB models to such assessments.
Programme 411
Campaign
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (down) 2296-6463 ISBN Medium
Area Expedition Conference
Notes Approved yes
Call Number Serial 8030
Permanent link to this record
 

 
Author Andrea Spolaor, Beatrice Moroni, Bartłomiej Luks, Adam Nawrot, Marco Roman, Catherine Larose, Łukasz Stachnik, Federica Bruschi, Krystyna Kozioł, Filip Pawlak, Clara Turetta, Elena Barbaro, Jean-Charles Gallet, David Cappelletti
Title Investigation on the Sources and Impact of Trace Elements in the Annual Snowpack and the Firn in the Hansbreen (Southwest Spitsbergen) Type Journal
Year 2021 Publication Frontiers in Earth Science Abbreviated Journal
Volume 8 Issue Pages
Keywords
Abstract We present a thorough evaluation of the water soluble fraction of the trace element composition (Ca, Sr, Mg, Na, K, Li, B, Rb, U, Ni, Co, As, Cs, Cd, Mo, Se, Eu, Ba, V, Ge, Ga, Cr, Cr, P, Ti, Mn, Zr, Ce, Zn, Fe, Gd, Y, Pb, Bi, Yb, Al, Nb, Er, Nd, Dy, Sm, Ho, Th, La, Lu, Tm, Pr, Tb, Fe, In, Tl) and their fluxes in the annual snowpack and the firn of the Hansbreen (a tidewater glacier terminating in the Hornsund fjord, southwest Spitsbergen). The trace element samples were obtained from a 3 m deep snow pit dug at the plateau of the glacier (450 m a.s.l.), and from a 2 m deep firn core collected from the bottom of the snow pit. The comparison of elemental fluxes and enrichment factors allowed us to constrain specific summer and wintertime deposition patterns of water soluble trace elements in the southern part of the Svalbard archipelago. Our results suggest that the chemical composition of the Hansbreen (and likely other glaciers where the summit is close to the equilibrium line) is mainly affected by summertime deposition of trace elements from local sources and some volatile elements, which may be transported into the Arctic when polar vortex is weak. The melting of the annual snowpack seems to have a minor influence on the overall chemical signature of the glacier ice.
Programme 1192
Campaign
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (down) 2296-6463 ISBN Medium
Area Expedition Conference
Notes Approved yes
Call Number Serial 8606
Permanent link to this record
 

 
Author Afsaneh Mohammadzaheri, Karin Sigloch, Kasra Hosseini, Mitchell G. Mihalynuk
Title Subducted Lithosphere Under South America From Multifrequency P Wave Tomography Type Journal
Year 2021 Publication Journal of Geophysical Research: Solid Earth Abbreviated Journal
Volume 126 Issue 6 Pages e2020JB020704
Keywords Andes intra-arc intra-oceanic subduction seismic tomography South America structure of the mantel
Abstract We analyze mantle structure under South America in the DETOX-P1 seismic tomography model, a global-scale, multifrequency inversion of teleseismic P waves. DETOX-P1 inverts the most extensive data set of broadband, waveform-based traveltime measurements to date, complemented by analyst-picked traveltimes from the ISC-EHB catalog. The mantle under South America is sampled by ∼665,000 cross-correlation traveltimes measured on 529 South American broadband stations and on 5,389 stations elsewhere. By their locations, depths, and geometries, we distinguish four high-velocity provinces under South America, interpreted as subducted lithosphere (“slabs”). The deepest (∼1,800–1,200 km depth) and shallowest (<600 km) slab provinces are observed beneath the Andean Cordillera near the continent’s northwest coast. At intermediate depths (1,200–900 km, 900–600 km), two slab provinces are observed farther east, under Brazil, Bolivia and Venezuela, with links to the Caribbean. We interpret the slabs relative to South America’s paleo-position over time, exploring the hypothesis that slabs sank essentially vertically after widening by viscous deformation in the mantle transition zone. The shallowest slab province carries the geometric imprint of the continental margin and represents ocean-beneath-continent subduction during Cenozoic times. The deepest, farthest west slab complex formed under intra-oceanic trenches during late Jurassic and Cretaceous times, far west of South America’s paleo-position adjoined to Africa. The two intermediate slab complexes record the Cretaceous transition from westward intra-oceanic subduction to eastward subduction beneath South America. This geophysical inference matches geologic records of the transition from Jura-Cretaceous, extensional “intra-arc” basins to basin inversion and onset of the modern Andean arc ∼85 Ma.
Programme 133
Campaign
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (down) 2169-9356 ISBN Medium
Area Expedition Conference
Notes Approved yes
Call Number Serial 7991
Permanent link to this record
 

 
Author Jun Xie, Risheng Chu, Sidao Ni
Title Evaluating Global Tomography Models With Antipodal Ambient Noise Cross-Correlation Functions Type Journal
Year 2021 Publication Journal of Geophysical Research: Solid Earth Abbreviated Journal
Volume 126 Issue 3 Pages e2020JB020444
Keywords ambient noise cross-correlation functions antipodal surface waves mantle heterogeneity tomography model evaluation
Abstract It is essential to evaluate global tomography models, which provide important information for understanding Earth's structure and dynamics. Long-period surface waves propagating between antipodal stations are good candidates for this purpose since they depend on global-scale velocity variations in the upper mantle. In this study, we extract minor-arc and major-arc Rayleigh waves from ambient noise cross correlations between GEOSCOPE station AIS and ∼1,800 USArray stations near the antipode of AIS. We identify two Rayleigh-wave-focusing regions and simulate the observed maximum amplitude pattern at the antipodal region using synthetic surface waves based on three global tomography models. Our simulations suggest that seismic heterogeneity of the tomography models need to be inflated by a factor of 2–3 in oceanic regions to explain the observed focusing pattern of surface waves near the antipodal region.
Programme 133
Campaign
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (down) 2169-9356 ISBN Medium
Area Expedition Conference
Notes Approved yes
Call Number Serial 7993
Permanent link to this record
 

 
Author N. Ribeiro, L. Herraiz-Borreguero, S. R. Rintoul, C. R. McMahon, M. Hindell, R. Harcourt, G. Williams
Title Warm Modified Circumpolar Deep Water Intrusions Drive Ice Shelf Melt and Inhibit Dense Shelf Water Formation in Vincennes Bay, East Antarctica Type Journal
Year 2021 Publication Journal of Geophysical Research: Oceans Abbreviated Journal
Volume 126 Issue 8 Pages e2020JC016998
Keywords AABW Antarctic Coastal Circulation Antarctic Margins basal melt mCDW intrusions seal CTD
Abstract Antarctic Bottom Water (AABW) production supplies the deep limb of the global overturning circulation and ventilates the deep ocean. While the Weddell and Ross Seas are recognized as key sites for AABW production, additional sources have been discovered in coastal polynya regions around East Antarctica, most recently at Vincennes Bay. Vincennes Bay, despite encompassing two distinct polynya regions, is considered the weakest source, producing Dense Shelf Water (DSW) only just dense enough to contribute to the lighter density classes of AABW found offshore. Here we provide the first detailed oceanographic observations of the continental shelf in Vincennes Bay (104-111°E), using CTD data from instrumented elephant seals spanning from February to November of 2012. We find that Vincennes Bay has East Antarctica’s warmest recorded intrusions of modified Circumpolar Deep Water (mCDW) and that warm mCDW drives basal melt under Vanderford and Underwood ice shelves. Our study also provides the first direct observational evidence for the inflow of meltwater to this region, which increases stratification and hinders DSW formation, and thus AABW production. The Vincennes Bay glaciers, together with the Totten Glacier, drain part of the Aurora Basin, which holds up to 7 m of sea level rise equivalent. Our results highlight the vulnerability of the East Antarctic Ice Sheet to intrusions of mCDW.
Programme 109
Campaign
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (down) 2169-9291 ISBN Medium
Area Expedition Conference
Notes Approved yes
Call Number Serial 8211
Permanent link to this record