Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Sarah Albertin, Slimane Bekki, Joël Savarino openurl 
  Title Nitrogen isotopes (δ15N) and oxygen isotope anomalies (Δ17O, δ18O) in atmospheric nitrogen dioxide : a new perspective for isotopic constraints on oxidation and aerosols formation processes Type Communication
  Year 2021 Publication EGU General Assembly 2021, 10-30 april 2021, Vienna, Austria Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract  
  Programme 1215  
  Campaign  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (down) EGU21-2634 ISBN Medium  
  Area Expedition Conference  
  Notes Approved yes  
  Call Number Serial 8511  
Permanent link to this record
 

 
Author Dedieu, J.-P., A. Wendleder, B. Cerino, J. Boike, E. Bernard, J.-C. Gallet, and H.-W. Jacobi doi  openurl
  Title Snow change detection from polarimetric SAR time-series at X-band (Svalbard, Norway), EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-149. Type Peer-reviewed symposium
  Year 2021 Publication Egusphere Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract

Due to recent climate change conditions, i.e. increasing temperatures and changing precipitation patterns, arctic snow cover dynamics exhibit strong changes in terms of extent and duration. Arctic amplification processes and impacts are well documented expected to strengthen in coming decades. In this context, innovative observation methods are helpful for a better comprehension of the spatial variability of snow properties relevant for climate research and hydrological applications.

Microwave remote sensing provides exceptional spatial and temporal performance in terms of all-weather application and target penetration. Time-series of Synthetic Active Radar images (SAR) are becoming more accessible at different frequencies and polarimetry has demonstrated a significant advantage for detecting changes in different media. Concerning arctic snow monitoring, SAR sensors can offer continuous time-series during the polar night and with cloud cover, providing a consequent advantage in regard of optical sensors.

The aim of this study is dedicated to the spatial/temporal variability of snow in the Ny-Ålesund area on the Br∅gger peninsula, Svalbard (N 78°55’ / E 11° 55’). The TerraSAR-X satellite (DLR, Germany) operated at X-band (3.1 cm, 9.6 GHz) with dual co-pol mode (HH/VV) at 5-m spatial resolution, and with high incidence angles (36° to 39°) poviding a better snow penetration and reducing topographic constraints. A dataset of 92 images (ascending and descending) is available since 2017, together with a high resolution DEM (NPI 5-m) and consistent in-situ measurements of meteorological data and snow profiles including glaciers sites.

Polarimetric processing is based on the Kennaugh matrix decomposition, copolar phase coherence (CCOH) and copolar phase difference (CPD). The Kennaugh matrix elements K0, K3, K4, and K7 are, respectively, the total intensity, phase ratio, intensity ratio, and shift between HH and VV phase center. Their interpretation allows analysing the structure of the snowpack linked to the near real time of in-situ measurements (snow profiles).

The X-band signal is strongly influenced by the snow stratigraphy: internal ice layers reduce or block the penetration of the signal into the snow pack. The best R2 correlation performances between estimated and measured snow heights are ranging from 0.50 to 0.70 for dry snow conditions. Therefore, the use of the X-band for regular snow height estimations remains limited under these conditions.

Conversely, this study shows the benefit of TerraSAR-X thanks to the Kennaugh matrix elements analysis. A focus is set on the Copolar Phase Difference (CPD, Leinss 2016) between VV and HH polarization: Φ CPD = Φ VV – Φ HH. Our results indicate that the CPD values are related to the snow metamorphism: positive values correspond to dry snow (horizontal structures), negative values indicate recrystallization processes (vertical structures).

Backscattering evolution in time offer a good proxy for meteorological events detection, impacting on snow metamorphism. Fresh snowfalls or melting processes can then be retrieved at the regional scale and linked to air temperature or precipitation measurements at local scale. Polarimetric SAR time series is therefore of interest to complement satellite-based precipitation measurements in the Arctic.

 
  Programme 1126  
  Campaign  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (down) EGU21-149 ISBN Medium  
  Area Expedition Conference  
  Notes Approved yes  
  Call Number Serial 7247  
Permanent link to this record
 

 
Author Mccoy, Kd doi  openurl
  Title Tick and tick-borne disease circulation in a changing marine ecosystem Type Book
  Year 2021 Publication In “Climate, Ticks and Disease” ed. Pat Nuttall, University of Oxford, UK, CABI Climate Change Series Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract This Book Brings Together Expert Opinions From Scientists To Consider The Evidence For Climate Change And Its Impacts On Ticks And Tick-borne Infections, And Provide Predictions For The Future. It Considers What Is Meant By 'Climate Change', How Good Are Climate Models Relevant To Ecosystems, And Predictions For Changes In Climate At Global, Regional, And Local Scales Relevant For Ticks And Tick-borne Infections. It Examines Changes To Tick Distribution And The Evidence That Climate Change Is Responsible. The Effect Of Climate On The Physiology And Metabolism Of Ticks, Including Potentially Critical Impacts On The Tick Microbiome Is Stressed. Given That The Notoriety Of Ticks Derives From Pathogens They Transmit, Do Changes In Climate Affect Vector Capacity? Ticks Transmit A Remarkable Range Of Micro- And Macro-parasites Many Of Which Are Pathogens Of Humans And Domesticated Animals. The Intimacy Between Tick-borne Agent And Tick Vector Means That Any Impacts Of Climate On A Tick Vector Will Impact Tick-borne Pathogens. Most Obviously, Such Impacts Will Be Apparent As Changes In Disease Incidence And Prevalence. The Evidence That Climate Change Is Affecting Diseases Caused By Tick-borne Pathogens Is Considered, Along With The Potential To Make Robust Predictions Of Future Events.  
  Programme 333  
  Campaign  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (down) 9781789249637 ISBN Medium  
  Area Expedition Conference  
  Notes Approved yes  
  Call Number Serial 8036  
Permanent link to this record
 

 
Author Grémillet, David openurl 
  Title Les manchots de Mandela et autres récits océaniques Type Book
  Year 2021 Publication Abbreviated Journal  
  Volume Issue Pages 232 pages  
  Keywords  
  Abstract  
  Programme 388  
  Campaign  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (down) 978-2-330-15652-7 ISBN Medium  
  Area Expedition Conference  
  Notes Approved yes  
  Call Number Serial 8448  
Permanent link to this record
 

 
Author Karen D. McCoy isbn  openurl
  Title Community-Level Interactions and Disease Dynamics Type Book
  Year 2021 Publication Infectious Disease Ecology of Wild Birds Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract An ecological community includes all individuals of all species that interact within a single patch or local area of habitat. Understanding the outcome of host–parasite interactions and predicting disease dynamics is particularly challenging at this biological scale because the different component species interact both directly and indirectly in complex ways. Current shifts in biodiversity due to global change, and its associated modifications to biological communities, will alter these interactions, including the probability of disease emergence, its dynamics over time, and its community-level consequences. Birds are integral component species of almost all natural communities. Due to their ubiquity and specific life history traits, they are defining actors in the ecology, evolution, and epidemiology of parasitic species. To better understand this role, this chapter examines the relative importance of birds and parasites in natural communities, revisiting basic notions in community ecology. The impact of changes in diversity for disease dynamics, including the debate surrounding dilution and amplification effects are specifically addressed. By considering the intrinsic complexities of natural communities, the importance of combining data from host and parasite communities to better understand how natural systems function over time and space is highlighted. The different elements in each section of the chapter are illustrated with brief, concrete examples from avian species, with a detailed example from marine bird communities in which Lyme disease bacteria circulate.  
  Programme 333  
  Campaign  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (down) 978-0-19-874624-9 ISBN 978-0-19-874624-9 Medium  
  Area Expedition Conference  
  Notes Approved yes  
  Call Number Serial 8498  
Permanent link to this record
 

 
Author M. Afroosa, B. Rohith, Arya Paul, Fabien Durand, Romain Bourdallé-Badie, P. V. Sreedevi, Olivier de Viron, Valérie Ballu, S. S. C. Shenoi doi  openurl
  Title Madden-Julian oscillation winds excite an intraseasonal see-saw of ocean mass that affects Earth’s polar motion Type Journal
  Year 2021 Publication Communications Earth & Environment Abbreviated Journal  
  Volume 2 Issue 1 Pages 1-8  
  Keywords Physical oceanography  
  Abstract Strong large-scale winds can relay their energy to the ocean bottom and elicit an almost immediate intraseasonal barotropic (depth independent) response in the ocean. The intense winds associated with the Madden-Julian Oscillation over the Maritime Continent generate significant intraseasonal basin-wide barotropic sea level variability in the tropical Indian Ocean. Here we show, using a numerical model and a network of in-situ bottom pressure recorders, that the concerted barotropic response of the Indian and the Pacific Ocean to these winds leads to an intraseasonal see-saw of oceanic mass in the Indo-Pacific basin. This global-scale mass shift is unexpectedly fast, as we show that the mass field of the entire Indo-Pacific basin is dynamically adjusted to Madden-Julian Oscillation in a few days. We find this large-scale ocean see-saw, induced by the Madden-Julian Oscillation, has a detectable influence on the Earth’s polar axis motion, in particular during the strong see-saw of early 2013.  
  Programme 688  
  Campaign  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (down) 2662-4435 ISBN Medium  
  Area Expedition Conference  
  Notes Approved yes  
  Call Number Serial 8387  
Permanent link to this record
 

 
Author TaeOh Kwon, Hideaki Shibata, Sebastian Kepfer-Rojas, Inger K. Schmidt, Klaus S. Larsen, Claus Beier, Björn Berg, Kris Verheyen, Jean-Francois Lamarque, Frank Hagedorn, Nico Eisenhauer, Ika Djukic, TeaComposition Network , TaeOh Kwon, Hideaki Shibata, Sebastian Kepfer-Rojas, Inger Kappel Schmidt, Klaus Steenberg Larsen, Claus Beier, Björn Berg, Kris Verheyen, Jean Francois Lamarque, Frank Hagedorn, Nico Eisenhauer, Ika Djukic, Adriano Caliman, Alain Paquette, Alba Gutiérrez-Girón, Alessandro Petraglia, Algirdas Augustaitis, Amélie Saillard, Ana Carolina Ruiz-Fernández, Ana I. Sousa, Ana I. Lillebø, Anderson da Rocha Gripp, Andrea Lamprecht, Andreas Bohner, André-Jean Francez, Andrey Malyshev, Andrijana Andrić, Angela Stanisci, Anita Zolles, Anna Avila, Anna-Maria Virkkala, Anne Probst, Annie Ouin, Anzar A. Khuroo, Arne Verstraeten, Artur Stefanski, Aurora Gaxiola, Bart Muys, Beatriz Gozalo, Bernd Ahrends, Bo Yang, Brigitta Erschbamer, Carmen Eugenia Rodríguez Ortíz, Casper T. Christiansen, Céline Meredieu, Cendrine Mony, Charles Nock, Chiao-Ping Wang, Christel Baum, Christian Rixen, Christine Delire, Christophe Piscart, Christopher Andrews, Corinna Rebmann, Cristina Branquinho, Dick Jan, Dirk Wundram, Dušanka Vujanović, E. Carol Adair, Eduardo Ordóñez-Regil, Edward R. Crawford, Elena F. Tropina, Elisabeth Hornung, Elli Groner, Eric Lucot, Esperança Gacia, Esther Lévesque, Evanilde Benedito, Evgeny A. Davydov, Fábio Padilha Bolzan, Fernando T. Maestre, Florence Maunoury-Danger, Florian Kitz, Florian Hofhansl, Flurin Sutter, Francisco de Almeida Lobo, Franco Leadro Souza, Franz Zehetner, Fulgence Kouamé Koffi, Georg Wohlfahrt, Giacomo Certini, Gisele Daiane Pinha, Grizelle González, Guylaine Canut, Harald Pauli, Héctor A. Bahamonde, Heike Feldhaar, Heinke Jäger, Helena Cristina Serrano, Hélène Verheyden, Helge Bruelheide, Henning Meesenburg, Hermann Jungkunst, Hervé Jactel, Hiroko Kurokawa, Ian Yesilonis, Inara Melece, Inge van Halder, Inmaculada García Quirós, István Fekete, Ivika Ostonen, Jana Borovská, Javier Roales, Jawad Hasan Shoqeir, Jean-Christophe Lata, Jean-Luc Probst, Jeyanny Vijayanathan, Jiri Dolezal, Joan-Albert Sanchez-Cabeza, Joël Merlet, John Loehr, Jonathan von Oppen, Jörg Löffler, José Luis Benito Alonso, José-Gilberto Cardoso-Mohedano, Josep Peñuelas, Joseph C. Morina, Juan Darío Quinde, Juan J. Jiménez, Juha M. Alatalo, Julia Seeber, Julia Kemppinen, Jutta Stadler, Kaie Kriiska, Karel Van den Meersche, Karibu Fukuzawa, Katalin Szlavecz, Katalin Juhos, Katarína Gerhátová, Kate Lajtha, Katie Jennings, Katja Tielbörger, Kazuhiko Hoshizaki, Ken Green, Klaus Steinbauer, Laryssa Pazianoto, Laura Dienstbach, Laura Yahdjian, Laura J. Williams, Laurel Brigham, Lee Hanna, Liesbeth van den Brink, Lindsey Rustad, Lourdes Morillas, Luciana Silva Carneiro, Luciano Di Martino, Luis Villar, Luísa Alícida Fernandes Tavares, Madison Morley, Manuela Winkler, Marc Lebouvier, Marcello Tomaselli, Marcus Schaub, Maria Glushkova, Maria Guadalupe Almazan Torres, Marie-Anne de Graaff, Marie-Noëlle Pons, Marijn Bauters, Marina Mazón, Mark Frenzel, Markus Wagner, Markus Didion, Maroof Hamid, Marta Lopes, Martha Apple, Martin Weih, Matej Mojses, Matteo Gualmini, Matthew Vadeboncoeur, Michael Bierbaumer, Michael Danger, Michael Scherer-Lorenzen, Michal Růžek, Michel Isabellon, Michele Di Musciano, Michele Carbognani, Miglena Zhiyanski, Mihai Puşcaş, Milan Barna, Mioko Ataka, Miska Luoto, Mohammed H. Alsafaran, Nadia Barsoum, Naoko Tokuchi, Nathalie Korboulewsky, Nicolas Lecomte, Nina Filippova, Norbert Hölzel, Olga Ferlian, Oscar Romero, Osvaldo Pinto-Jr, Pablo Peri, Pavel Dan Turtureanu, Peter Haase, Peter Macreadie, Peter B. Reich, Petr Petřík, Philippe Choler, Pierre Marmonier, Quentin Ponette, Rafael Dettogni Guariento, Rafaella Canessa, Ralf Kiese, Rebecca Hewitt, Robert Weigel, Róbert Kanka, Roberto Cazzolla Gatti, Rodrigo Lemes Martins, Romà Ogaya, Romain Georges, Rosario G. Gavilán, Sally Wittlinger, Sara Puijalon, Satoshi Suzuki, Schädler Martin, Schmidt Anja, Sébastien Gogo, Silvio Schueler, Simon Drollinger, Simone Mereu, Sonja Wipf, Stacey Trevathan-Tackett, Stefan Stoll, Stefan Löfgren, Stefan Trogisch, Steffen Seitz, Stephan Glatzel, Susanna Venn, Sylvie Dousset, Taiki Mori, Takanori Sato, Takuo Hishi, Tatsuro Nakaji, Theurillat Jean-Paul, Thierry Camboulive, Thomas Spiegelberger, Thomas Scholten, Thomas J. Mozdzer, Till Kleinebecker, Tomáš Rusňák, Tshililo Ramaswiela, Tsutom Hiura, Tsutomu Enoki, Tudor-Mihai Ursu, Umberto Morra di Cella, Ute Hamer, Valentin Klaus, Valter Di Cecco, Vanessa Rego, Veronika Fontana, Veronika Piscová, Vincent Bretagnolle, Vincent Maire, Vinicius Farjalla, Vittoz Pascal, Wenjun Zhou, Wentao Luo, William Parker, Yasuhiro Utsumi, Yuji Kominami, Zsolt Kotroczó, Zsolt Tóth openurl 
  Title Effects of Climate and Atmospheric Nitrogen Deposition on Early to Mid-Term Stage Litter Decomposition Across Biomes Type Journal
  Year 2021 Publication Frontiers in Forests and Global Change Abbreviated Journal  
  Volume 4 Issue Pages  
  Keywords  
  Abstract Litter decomposition is a key process for carbon and nutrient cycling in terrestrial ecosystems and is mainly controlled by environmental conditions, substrate quantity and quality as well as microbial community abundance and composition. In particular, the effects of climate and atmospheric nitrogen (N) deposition on litter decomposition and its temporal dynamics are of significant importance, since their effects might change over the course of the decomposition process. Within the TeaComposition initiative, we incubated Green and Rooibos teas at 524 sites across nine biomes. We assessed how macroclimate and atmospheric inorganic N deposition under current and predicted scenarios (RCP 2.6, RCP 8.5) might affect litter mass loss measured after 3 and 12 months. Our study shows that the early to mid-term mass loss at the global scale was affected predominantly by litter quality (explaining 73% and 62% of the total variance after 3 and 12 months, respectively) followed by climate and N deposition. The effects of climate were not litter-specific and became increasingly significant as decomposition progressed, with MAP explaining 2% and MAT 4% of the variation after 12 months of incubation. The effect of N deposition was litter-specific, and significant only for 12-month decomposition of Rooibos tea at the global scale. However, in the temperate biome where atmospheric N deposition rates are relatively high, the 12-month mass loss of Green and Rooibos teas decreased significantly with increasing N deposition, explaining 9.5% and 1.1% of the variance, respectively. The expected changes in macroclimate and N deposition at the global scale by the end of this century are estimated to increase the 12-month mass loss of easily decomposable litter by 1.1–3.5% and of the more stable substrates by 3.8–10.6%, relative to current mass loss. In contrast, expected changes in atmospheric N deposition will decrease the mid-term mass loss of high-quality litter by 1.4–2.2% and that of low-quality litter by 0.9–1.5% in the temperate biome. Our results suggest that projected increases in N deposition may have the capacity to dampen the climate-driven increases in litter decomposition depending on the biome and decomposition stage of substrate.  
  Programme 136  
  Campaign  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (down) 2624-893X ISBN Medium  
  Area Expedition Conference  
  Notes Approved yes  
  Call Number Serial 8301  
Permanent link to this record
 

 
Author Denis Réale doi  openurl
  Title Sexual segregation in a sexually dimorphic seabird: a matter of spatial scale Type Journal
  Year 2021 Publication Peer Community in Ecology Abbreviated Journal  
  Volume 1 Issue Pages 100025  
  Keywords  
  Abstract A recommendation of: Christophe Barbraud, Karine Delord, Akiko Kato, Paco Bustamante, Yves Cherel Sexual segregation in a highly pagophilic and sexually dimorphic marine predator https://doi.org/10.1101/472431  
  Programme 109  
  Campaign  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (down) 2606-4979 ISBN Medium  
  Area Expedition Conference  
  Notes Approved yes  
  Call Number Serial 8434  
Permanent link to this record
 

 
Author Tomoko Narazaki, Itsumi Nakamura, Kagari Aoki, Takashi Iwata, Kozue Shiomi, Paolo Luschi, Hiroyuki Suganuma, Carl G. Meyer, Rui Matsumoto, Charles A. Bost, Yves Handrich, Masao Amano, Ryosuke Okamoto, Kyoichi Mori, Stéphane Ciccione, Jérôme Bourjea, Katsufumi Sato doi  openurl
  Title Similar circling movements observed across marine megafauna taxa Type Journal
  Year 2021 Publication iScience Abbreviated Journal  
  Volume 24 Issue 4 Pages 102221  
  Keywords Animals Biological Sciences Ecology Ethology Zoology  
  Abstract Advances in biologging technology have enabled 3D dead-reckoning reconstruction of marine animal movements at spatiotemporal scales of meters and seconds. Examining high-resolution 3D movements of sharks (Galeocerdo cuvier, N = 4; Rhincodon typus, N = 1), sea turtles (Chelonia mydas, N = 3), penguins (Aptenodytes patagonicus, N = 6), and marine mammals (Arctocephalus gazella, N = 4; Ziphius cavirostris, N = 1), we report the discovery of circling events where animals consecutively circled more than twice at relatively constant angular speeds. Similar circling behaviors were observed across a wide variety of marine megafauna, suggesting these behaviors might serve several similar purposes across taxa including foraging, social interactions, and navigation.  
  Programme 394  
  Campaign  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (down) 2589-0042 ISBN Medium  
  Area Expedition Conference  
  Notes Approved yes  
  Call Number Serial 8095  
Permanent link to this record
 

 
Author Makoto Sampei, Louis Fortier, Patrick Raimbault, Kohei Matsuno, Yoshiyuki Abe, Bernard Quéguiner, Augustin Lafond, Marcel Babin, Toru Hirawake doi  openurl
  Title An estimation of the quantitative impacts of copepod grazing on an under sea-ice spring phytoplankton bloom in western Baffin Bay, Canadian Arctic Type Journal
  Year 2021 Publication Elementa: Science of the Anthropocene Abbreviated Journal  
  Volume 9 Issue 1 Pages 00092  
  Keywords  
  Abstract This study aimed to quantify the impact of copepod grazing on the productivity of phytoplankton during an under sea-ice spring phytoplankton bloom (USPB) in western Baffin Bay. To quantify positive and/or negative impacts of copepod grazing on primary production and the interaction between copepod grazing and phytoplankton species, we sampled seawater and zooplankton under the landfast sea ice every 2–3 days between May 24 and July 10, 2016. Samples were analyzed for estimation of primary production, chlorophyll-a (chl-a) concentration, diatom abundance, and copepod fecal pellet (FP) production/grazing rate. Analyses of chl-a concentration, primary production, and FP production/grazing rate revealed clear temporal changes and a mismatch between primary production and copepod consumption. The FP production/grazing rate reached a maximum (9.4/31.2 mg C m–2 d–1) on June 16 before the USPB phase and suddenly decreased to 0.7/2.4 mg C m–2 d–1 on June 21, despite an increase in primary production to 74.0 mg C m–2 d–1. The copepod grazing rate (3.7 mg C m–2 d–1) was low relative to primary production (344.6 mg C m–2 d–1) during the USPB phase (after June 20). While our estimates illustrate that copepod grazing did not limit the maximum daily primary production during the USPB, the low grazing pressure (2% of primary production) may have been an additional contributor to the reduction in total primary productivity at the end of the USPB period due primarily to the low supply of regenerated nitrogen-containing nutrients to drive regenerated production.  
  Programme 1164  
  Campaign  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (down) 2325-1026 ISBN Medium  
  Area Expedition Conference  
  Notes Approved yes  
  Call Number Serial 8255  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print