Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Hélène Angot, Olivier Magand, Detlev Helmig, Philippe Ricaud, Boris Quennehen, Hubert Gallée, Massimo Del Guasta, Francesca Sprovieri, Nicola Pirrone, Joël Savarino, Aurélien Dommergue doi  isbn
openurl 
  Title New insights into the atmospheric mercury cycling in central Antarctica and implications on a continental scale Type Journal
  Year 2016 Publication Atmospheric Chemistry and Physics Abbreviated Journal  
  Volume 16 Issue 13 Pages 8249-8264  
  Keywords  
  Abstract

Abstract. Under the framework of the GMOS project (Global Mercury Observation System) atmospheric mercury monitoring has been implemented at Concordia Station on the high-altitude Antarctic plateau (75°06′S, 123°20′E, 3220m above sea level). We report here the first year-round measurements of gaseous elemental mercury (Hg(0)) in the atmosphere and in snowpack interstitial air on the East Antarctic ice sheet. This unique data set shows evidence of an intense oxidation of atmospheric Hg(0) in summer (24-hour daylight) due to the high oxidative capacity of the Antarctic plateau atmosphere in this period of the year. Summertime Hg(0) concentrations exhibited a pronounced daily cycle in ambient air with maximal concentrations around midday. Photochemical reactions and chemical exchange at the air–snow interface were prominent, highlighting the role of the snowpack on the atmospheric mercury cycle. Our observations reveal a 20 to 30% decrease of atmospheric Hg(0) concentrations from May to mid-August (winter, 24h darkness). This phenomenon has not been reported elsewhere and possibly results from the dry deposition of Hg(0) onto the snowpack. We also reveal the occurrence of multi-day to weeklong atmospheric Hg(0) depletion events in summer, not associated with depletions of ozone, and likely due to a stagnation of air masses above the plateau triggering an accumulation of oxidants within the shallow boundary layer. Our observations suggest that the inland atmospheric reservoir is depleted in Hg(0) in summer. Due to katabatic winds flowing out from the Antarctic plateau down the steep vertical drops along the coast and according to observations at coastal Antarctic stations, the striking reactivity observed on the plateau most likely influences the cycle of atmospheric mercury on a continental scale.

 
  Programme 1013  
  Campaign  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1680-7316 ISBN (down) 1680-7316 Medium  
  Area Expedition Conference  
  Notes Approved yes  
  Call Number Serial 7232  
Permanent link to this record
 

 
Author Michel Legrand, Susanne Preunkert, Eric Wolff, Rolf Weller, Bruno Jourdain, Dietmar Wagenbach doi  isbn
openurl 
  Title Year-round records of bulk and size-segregated aerosol composition in central Antarctica (Concordia site) – Part 1: Fractionation of sea-salt particles Type Journal
  Year 2017 Publication Atmospheric Chemistry and Physics Abbreviated Journal  
  Volume 17 Issue 22 Pages 14039-14054  
  Keywords  
  Abstract

Abstract. Multiple year-round records of bulk and size-segregated composition of aerosol were obtained at the inland site of Concordia located at Dome C in East Antarctica. In parallel, sampling of acidic gases on denuder tubes was carried out to quantify the concentrations of HCl and HNO3 present in the gas phase. These time series are used to examine aerosol present over central Antarctica in terms of chloride depletion relative to sodium with respect to freshly emitted sea-salt aerosol as well as depletion of sulfate relative to sodium with respect to the composition of seawater. A depletion of chloride relative to sodium is observed over most of the year, reaching a maximum of ∼ 20ngm−3 in spring when there are still large sea-salt amounts and acidic components start to recover. The role of acidic sulfur aerosol and nitric acid in replacing chloride from sea-salt particles is here discussed. HCl is found to be around twice more abundant than the amount of chloride lost by sea-salt aerosol, suggesting that either HCl is more efficiently transported to Concordia than sea-salt aerosol or re-emission from the snow pack over the Antarctic plateau represents an additional significant HCl source. The size-segregated composition of aerosol collected in winter (from 2006 to 2011) indicates a mean sulfate to sodium ratio of sea-salt aerosol present over central Antarctica of 0.16±0.05, suggesting that, on average, the sea-ice and open-ocean emissions equally contribute to sea-salt aerosol load of the inland Antarctic atmosphere. The temporal variability of the sulfate depletion relative to sodium was examined at the light of air mass backward trajectories, showing an overall decreasing trend of the ratio (i.e., a stronger sulfate depletion relative to sodium) when air masses arriving at Dome C had traveled a longer time over sea ice than over open ocean. The findings are shown to be useful to discuss sea-salt ice records extracted at deep drilling sites located inland Antarctica.

 
  Programme 414  
  Campaign  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1680-7316 ISBN (down) 1680-7316 Medium  
  Area Expedition Conference  
  Notes Approved yes  
  Call Number Serial 7311  
Permanent link to this record
 

 
Author Michel Legrand, Susanne Preunkert, Rolf Weller, Lars Zipf, Christoph Elsässer, Silke Merchel, Georg Rugel, Dietmar Wagenbach file  doi
isbn  openurl
  Title Year-round record of bulk and size-segregated aerosol composition in central Antarctica (Concordia site) – Part 2: Biogenic sulfur (sulfate and methanesulfonate) aerosol Type Journal
  Year 2017 Publication Atmospheric Chemistry and Physics Abbreviated Journal  
  Volume 17 Issue 22 Pages 14055-14073  
  Keywords  
  Abstract Multiple year-round (2006–2015) records of the bulk and size-segregated composition of aerosol were obtained at the inland site of Concordia located in East Antarctica. The well-marked maximum of non-sea-salt sulfate (nssSO4) in January (100 ± 28 ng m−3 versus 4.4 ± 2.3 ng m−3 in July) is consistent with observations made at the coast (280 ± 78 ng m−3 in January versus 16 ± 9 ng m−3 in July at Dumont d'Urville, for instance). In contrast, the well-marked maximum of MSA at the coast in January (60 ± 23 ng m−3 at Dumont d'Urville) is not observed at Concordia (5.2 ± 2.0 ng m−3 in January). Instead, the MSA level at Concordia peaks in October (5.6 ± 1.9 ng m−3) and March (14.9 ± 5.7 ng m−3). As a result, a surprisingly low MSA-to-nssSO4 ratio (RMSA) is observed at Concordia in mid-summer (0.05 ± 0.02 in January versus 0.25 ± 0.09 in March). We find that the low value of RMSA in mid-summer at Concordia is mainly driven by a drop of MSA levels that takes place in submicron aerosol (0.3 µm diameter). The drop of MSA coincides with periods of high photochemical activity as indicated by high ozone levels, strongly suggesting the occurrence of an efficient chemical destruction of MSA over the Antarctic plateau in mid-summer. The relationship between MSA and nssSO4 levels is examined separately for each season and indicates that concentration of non-biogenic sulfate over the Antarctic plateau does not exceed 1 ng m−3 in fall and winter and remains close to 5 ng m−3 in spring. This weak non-biogenic sulfate level is discussed in the light of radionuclides (210Pb, 10Be, and 7Be) also measured on bulk aerosol samples collected at Concordia. The findings highlight the complexity in using MSA in deep ice cores extracted from inland Antarctica as a proxy of past dimethyl sulfide emissions from the Southern Ocean.  
  Programme 414  
  Campaign  
  Address  
  Corporate Author Thesis Bachelor's thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1680-7316 ISBN (down) 1680-7316 Medium  
  Area Expedition Conference  
  Notes Approved yes  
  Call Number Serial 7312  
Permanent link to this record
 

 
Author Sakiko Ishino, Shohei Hattori, Joel Savarino, Bruno Jourdain, Susanne Preunkert, Michel Legrand, Nicolas Caillon, Albane Barbero, Kota Kuribayashi, Naohiro Yoshida doi  isbn
openurl 
  Title Seasonal variations of triple oxygen isotopic compositions of atmospheric sulfate, nitrate, and ozone at Dumont d'Urville, coastal Antarctica Type Journal
  Year 2017 Publication Atmospheric Chemistry and Physics Abbreviated Journal  
  Volume 17 Issue 5 Pages 3713-3727  
  Keywords  
  Abstract

Abstract. Triple oxygen isotopic compositions (Δ17O = δ17O0.52 × δ18O) of atmospheric sulfate (SO42−) and nitrate (NO3) in the atmosphere reflect the relative contribution of oxidation pathways involved in their formation processes, which potentially provides information to reveal missing reactions in atmospheric chemistry models. However, there remain many theoretical assumptions for the controlling factors of Δ17O(SO42−) and Δ17O(NO3) values in those model estimations. To test one of those assumption that Δ17O values of ozone (O3) have a flat value and do not influence the seasonality of Δ17O(SO42−) and Δ17O(NO3) values, we performed the first simultaneous measurement of Δ17O values of atmospheric sulfate, nitrate, and ozone collected at Dumont d'Urville (DDU) Station (66°40′S, 140°01′E) throughout 2011. Δ17O values of sulfate and nitrate exhibited seasonal variation characterized by minima in the austral summer and maxima in winter, within the ranges of 0.9–3.4 and 23.0–41.9‰, respectively. In contrast, Δ17O values of ozone showed no significant seasonal variation, with values of 26±1‰ throughout the year. These contrasting seasonal trends suggest that seasonality in Δ17O(SO42−) and Δ17O(NO3) values is not the result of changes in Δ17O(O3), but of the changes in oxidation chemistry. The trends with summer minima and winter maxima for Δ17O(SO42−) and Δ17O(NO3) values are caused by sunlight-driven changes in the relative contribution of O3 oxidation to the oxidation by HOx, ROx, and H2O2. In addition to that general trend, by comparing Δ17O(SO42−) and Δ17O(NO3) values to ozone mixing ratios, we found that Δ17O(SO42−) values observed in spring (September to November) were lower than in fall (March to May), while there was no significant spring and fall difference in Δ17O(NO3) values. The relatively lower sensitivity of Δ17O(SO42−) values to the ozone mixing ratio in spring compared to fall is possibly explained by (i) the increased contribution of SO2 oxidations by OH and H2O2 caused by NOx emission from snowpack and/or (ii) SO2 oxidation by hypohalous acids (HOX = HOCl+HOBr) in the aqueous phase.

 
  Programme 1177  
  Campaign  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1680-7316 ISBN (down) 1680-7316 Medium  
  Area Expedition Conference  
  Notes Approved yes  
  Call Number Serial 7349  
Permanent link to this record
 

 
Author Rolf Weller, Michel Legrand, Susanne Preunkert file  doi
isbn  openurl
  Title Size distribution and ionic composition of marine summer aerosol at the continental Antarctic site Kohnen Type Journal
  Year 2018 Publication Atmospheric Chemistry and Physics Abbreviated Journal  
  Volume 18 Issue 4 Pages 2413-2430  
  Keywords  
  Abstract We Measured Aerosol Size Distributions And Conducted Bulk And Size-segregated Aerosol Sampling During Two Summer Campaigns In January 2015 And January 2016 At The Continental Antarctic Station Kohnen (Dronning Maud Land). Physical And Chemical Aerosol Properties Differ Conspicuously During The Episodic Impact Of A Distinctive Low-pressure System In 2015 (Lps15) Compared To The Prevailing Clear Sky Conditions. The Approximately 3-day Lps15 Located In The Eastern Weddell Sea Was Associated With The Following: Marine Boundary Layer Air Mass Intrusion; Enhanced Condensation Particle Concentrations (1400±700cm−3 Compared To 250±120cm−3 Under Clear Sky Conditions; Mean±sd); The Occurrence Of A New Particle Formation Event Exhibiting A Continuous Growth Of Particle Diameters (Dp) From 12 To 43nm Over 44h (Growth Rate 0.6nmh−1); Peaking Methane Sulfonate (Ms−), Non-sea-salt Sulfate (Nss–so42-), And Na+ Concentrations (190ngm−3ms−, 137ngm−3 Nss–so42-, And 53ngm−3na+ Compared To 24±15, 107±20, And 4.1±2.2ngm−3, Respectively, During Clear Sky Conditions); And Finally An Increased Ms−∕nss–so42- Mass Ratio βMs Of 0.4 Up To 2.3 (0.21±0.1 Under Clear Sky Conditions) Comparable To Typical Values Found At Coastal Antarctic Sites. Throughout The Observation Period A Larger Part Of Ms− Could Be Found In Super-micron Aerosol Compared To Nss–so42-, I.e., (10±2) % By Mass Compared To (3.2±2) %, Respectively. On The Whole, Under Clear Sky Conditions Aged Aerosol Characterized By Usually Mono-modal Size Distributions Around Dp=60nm Was Observed. Although Our Observations Indicate That The Sporadic Impacts Of Coastal Cyclones Were Associated With Enhanced Marine Aerosol Entry, Aerosol Deposition On-site During Austral Summer Should Be Largely Dominated By Typical Steady Clear Sky Conditions.  
  Programme 414  
  Campaign  
  Address  
  Corporate Author Thesis Bachelor's thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1680-7316 ISBN (down) 1680-7316 Medium  
  Area Expedition Conference  
  Notes Approved yes  
  Call Number Serial 7361  
Permanent link to this record
 

 
Author Marco Zanatta, Paolo Laj, Martin Gysel, Urs Baltensperger, Stergios Vratolis, Konstantinos Eleftheriadis, Yutaka Kondo, Philippe Dubuisson, Victor Winiarek, Stelios Kazadzis, Peter Tunved, Hans-Werner Jacobi doi  isbn
openurl 
  Title Effects of mixing state on optical and radiative properties of black carbon in the European Arctic Type Journal
  Year 2018 Publication Atmospheric Chemistry and Physics Abbreviated Journal  
  Volume 18 Issue 19 Pages 14037-14057  
  Keywords  
  Abstract

Abstract. Atmospheric aging promotes internal mixing of black carbon (BC), leading to an enhancement of light absorption and radiative forcing. The relationship between BC mixing state and consequent absorption enhancement was never estimated for BC found in the Arctic region. In the present work, we aim to quantify the absorption enhancement and its impact on radiative forcing as a function of microphysical properties and mixing state of BC observed in situ at the Zeppelin Arctic station (78 N) in the spring of 2012 during the CLIMSLIP (Climate impacts of short-lived pollutants in the polar region) project.

Single-particle soot photometer (SP2) measurements showed a mean mass concentration of refractory black carbon (rBC) of 39 ng m−3, while the rBC mass size distribution was of lognormal shape, peaking at an rBC mass-equivalent diameter (DrBC) of around 240 nm. On average, the number fraction of particles containing a BC core with DrBC>80 nm was less than 5 % in the size range (overall optical particle diameter) from 150 to 500 nm. The BC cores were internally mixed with other particulate matter. The median coating thickness of BC cores with 220 nm <DrBC< 260 nm was 52 nm, resulting in a core–shell diameter ratio of 1.4, assuming a coated sphere morphology. Combining the aerosol absorption coefficient observed with an Aethalometer and the rBC mass concentration from the SP2, a mass absorption cross section (MAC) of 9.8 m2 g−1 was inferred at a wavelength of 550 nm. Consistent with direct observation, a similar MAC value (8.4 m2 g−1 at 550 nm) was obtained indirectly by using Mie theory and assuming a coated-sphere morphology with the BC mixing state constrained from the SP2 measurements. According to these calculations, the lensing effect is estimated to cause a 54 % enhancement of the MAC compared to that of bare BC particles with equal BC core size distribution. Finally, the ARTDECO radiative transfer model was used to estimate the sensitivity of the radiative balance to changes in light absorption by BC as a result of a varying degree of internal mixing at constant total BC mass. The clear-sky noontime aerosol radiative forcing over a surface with an assumed wavelength-dependent albedo of 0.76–0.89 decreased, when ignoring the absorption enhancement, by −0.12 W m−2 compared to the base case scenario, which was constrained with mean observed aerosol properties for the Zeppelin site in Arctic spring. The exact magnitude of this forcing difference scales with environmental conditions such as the aerosol optical depth, solar zenith angle and surface albedo. Nevertheless, our investigation suggests that the absorption enhancement due to internal mixing of BC, which is a systematic effect, should be considered for quantifying the aerosol radiative forcing in the Arctic region.

 
  Programme 1126  
  Campaign  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1680-7316 ISBN (down) 1680-7316 Medium  
  Area Expedition Conference  
  Notes Approved yes  
  Call Number Serial 7473  
Permanent link to this record
 

 
Author Shaojie Song, Hélène Angot, Noelle E. Selin, Hubert Gallée, Francesca Sprovieri, Nicola Pirrone, Detlev Helmig, Joël Savarino, Olivier Magand, Aurélien Dommergue file  doi
isbn  openurl
  Title Understanding mercury oxidation and air–snow exchange on the East Antarctic Plateau: a modeling study Type Journal
  Year 2018 Publication Atmospheric Chemistry and Physics Abbreviated Journal  
  Volume 18 Issue 21 Pages 15825-15840  
  Keywords  
  Abstract

Abstract. Distinct diurnal and seasonal variations of mercury (Hg) have been observed in near-surface air at Concordia Station on the East Antarctic Plateau, but the processes controlling these characteristics are not well understood. Here, we use a box model to interpret the

 
  Programme 1177,1028  
  Campaign  
  Address  
  Corporate Author Thesis Bachelor's thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1680-7316 ISBN (down) 1680-7316 Medium  
  Area Expedition Conference  
  Notes Approved yes  
  Call Number Serial 7518  
Permanent link to this record
 

 
Author Hans-Werner Jacobi, Friedrich Obleitner, Sophie Da Costa, Patrick Ginot, Konstantinos Eleftheriadis, Wenche Aas, Marco Zanatta doi  isbn
openurl 
  Title Deposition of ionic species and black carbon to the Arctic snowpack: combining snow pit observations with modeling Type Journal
  Year 2019 Publication Atmospheric Chemistry and Physics Abbreviated Journal  
  Volume 19 Issue 15 Pages 10361-10377  
  Keywords  
  Abstract

Abstract. Although aerosols in the Arctic have multiple and complex impacts on the regional climate, their removal due to deposition is still not well quantified. We combined meteorological, aerosol, precipitation, and snowpack observations with simulations to derive information about the deposition of sea salt components and black carbon (BC) from November 2011 to April 2012 to the Arctic snowpack at two locations close to Ny-Ålesund, Svalbard. The dominating role of sea salt and the contribution of dust for the composition of atmospheric aerosols were reflected in the seasonal composition of the snowpack. The strong alignment of the concentrations of the major sea salt components in the aerosols, the precipitation, and the snowpack is linked to the importance of wet deposition for transfer from the atmosphere to the snowpack. This agreement was less strong for monthly snow budgets and deposition, indicating important relocation of the impurities inside the snowpack after deposition. Wet deposition was less important for the transfer of nitrate, non-sea-salt sulfate, and BC to the snow during the winter period. The average BC concentration in the snowpack remains small, with a limited impact on snow albedo and melting. Nevertheless, the observations also indicate an important redistribution of BC in the snowpack, leading to layers with enhanced concentrations. The complex behavior of bromide due to modifications during sea salt aerosol formation and remobilization in the atmosphere and in the snow were not resolved because of the lack of bromide measurements in aerosols and precipitation.

 
  Programme 1126  
  Campaign  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1680-7316 ISBN (down) 1680-7316 Medium  
  Area Expedition Conference  
  Notes Approved yes  
  Call Number Serial 7612  
Permanent link to this record
 

 
Author Elena Barbaro, Krystyna Koziol, Mats P. Björkman, Carmen P. Vega, Christian Zdanowicz, Tonu Martma, Jean-Charles Gallet, Daniel Kępski, Catherine Larose, Bartłomiej Luks, Florian Tolle, Thomas V. Schuler, Aleksander Uszczyk, Andrea Spolaor doi  isbn
openurl 
  Title Measurement report: Spatial variations in ionic chemistry and water-stable isotopes in the snowpack on glaciers across Svalbard during the 2015–2016 snow accumulation season Type Journal
  Year 2021 Publication Atmospheric Chemistry and Physics Abbreviated Journal  
  Volume 21 Issue 4 Pages 3163-3180  
  Keywords  
  Abstract The Svalbard archipelago, located at the Arctic sea-ice edge between 74 and 81∘ N, is ∼60 % covered by glaciers. The region experiences rapid variations in atmospheric flow during the snow season (from late September to May) and can be affected by air advected from both lower and higher latitudes, which likely impact the chemical composition of snowfall. While long-term changes in Svalbard snow chemistry have been documented in ice cores drilled from two high-elevation glaciers, the spatial variability of the snowpack composition across Svalbard is comparatively poorly understood. Here, we report the results of the most comprehensive seasonal snow chemistry survey to date, carried out in April 2016 across 22 sites on seven glaciers across the archipelago. At each glacier, three snowpits were sampled along the altitudinal profiles and the collected samples were analysed for major ions (Ca2+, K+, Na+, Mg2+, NH4+, SO42-, Br−, Cl−, and NO3-) and stable water isotopes (δ18O, δ2H). The main aims were to investigate the natural and anthropogenic processes influencing the snowpack and to better understand the influence of atmospheric aerosol transport and deposition patterns on the snow chemical composition. The snow deposited in the southern region of Svalbard is characterized by the highest total ionic loads, mainly attributed to sea-salt particles. Both NO3- and NH4+ in the seasonal snowpack reflect secondary aerosol formation and post-depositional changes, resulting in very different spatial deposition patterns: NO3- has its highest loading in north-western Spitsbergen and NH4+ in the south-west. The Br− enrichment in snow is highest in north-eastern glacier sites closest to areas of extensive sea-ice coverage. Spatial correlation patterns between Na+ and δ18O suggest that the influence of long-range transport of aerosols on snow chemistry is proportionally greater above 600–700 m a.s.l.  
  Programme 1192  
  Campaign  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1680-7316 ISBN (down) 1680-7316 Medium  
  Area Expedition Conference  
  Notes Approved yes  
  Call Number Serial 8608  
Permanent link to this record
 

 
Author Guillaume Schwob, Nicolás I. Segovia, Claudio González-Wevar, Léa Cabrol, Julieta Orlando, Elie Poulin doi  isbn
openurl 
  Title Exploring the Microdiversity Within Marine Bacterial Taxa: Toward an Integrated Biogeography in the Southern Ocean Type Journal
  Year 2021 Publication Frontiers in Microbiology Abbreviated Journal  
  Volume 12 Issue Pages 1985  
  Keywords  
  Abstract Most of the microbial biogeographic patterns in the oceans have been depicted at the whole community level, leaving out finer taxonomic resolution (i.e., microdiversity) that is crucial to conduct intra-population phylogeographic study, as commonly done for macroorganisms. Here, we present a new approach to unravel the bacterial phylogeographic patterns combining community-wide survey by 16S rRNA gene metabarcoding and intra-species resolution through the oligotyping method, allowing robust estimations of genetic and phylogeographic indices, and migration parameters. As a proof-of-concept, we focused on the bacterial genus Spirochaeta across three distant biogeographic provinces of the Southern Ocean; maritime Antarctica, sub-Antarctic Islands, and Patagonia. Each targeted Spirochaeta operational taxonomic units were characterized by a substantial intrapopulation microdiversity, and significant genetic differentiation and phylogeographic structure among the three provinces. Gene flow estimations among Spirochaeta populations support the role of the Antarctic Polar Front as a biogeographic barrier to bacterial dispersal between Antarctic and sub-Antarctic provinces. Conversely, the Antarctic Circumpolar Current appears as the main driver of gene flow, connecting sub-Antarctic Islands with Patagonia and maritime Antarctica. Additionally, historical processes (drift and dispersal limitation) govern up to 86% of the spatial turnover among Spirochaeta populations. Overall, our approach bridges the gap between microbial and macrobial ecology by revealing strong congruency with macroorganisms distribution patterns at the populational level, shaped by the same oceanographic structures and ecological processes.  
  Programme 1044  
  Campaign  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1664-302X ISBN (down) 1664-302X Medium  
  Area Expedition Conference  
  Notes Approved yes  
  Call Number Serial 6457  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print