|   | 
Details
   web
Records
Author (up) Andrea S. Grunst, Melissa L. Grunst, David Grémillet, Akiko Kato, Paco Bustamante, Céline Albert, Émile Brisson-Curadeau, Manon Clairbaux, Marta Cruz-Flores, Sophie Gentès, Samuel Perret, Eric Ste-Marie, Katarzyna Wojczulanis-Jakubas, Jérôme Fort
Title Mercury Contamination Challenges the Behavioral Response of a Keystone Species to Arctic Climate Change Type Journal
Year 2023 Publication Environmental Science & Technology Abbreviated Journal
Volume 57 Issue 5 Pages 2054-2063
Keywords
Abstract Combined effects of multiple, climate change-associated stressors are of mounting concern, especially in Arctic ecosystems. Elevated mercury (Hg) exposure in Arctic animals could affect behavioral responses to changes in foraging landscapes caused by climate change, generating interactive effects on behavior and population resilience. We investigated this hypothesis in little auks (Alle alle), a keystone Arctic seabird. We compiled behavioral data for 44 birds across 5 years using accelerometers while also quantifying blood Hg and environmental conditions. Warm sea surface temperature (SST) and low sea ice coverage reshaped time activity budgets (TABs) and diving patterns, causing decreased resting, increased flight, and longer dives. Mercury contamination was not associated with TABs. However, highly contaminated birds lengthened interdive breaks when making long dives, suggesting Hg-induced physiological limitations. As dive durations increased with warm SST, subtle toxicological effects threaten to increasingly constrain diving and foraging efficiency as climate change progresses, with ecosystem-wide repercussions.
Programme 388
Campaign
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0013-936X ISBN Medium
Area Expedition Conference
Notes Approved yes
Call Number Serial 8632
Permanent link to this record
 

 
Author (up) Andrea S. Grunst, Melissa L. Grunst, Jérôme Fort
Title Contaminant-by-environment interactive effects on animal behavior in the context of global change: Evidence from avian behavioral ecotoxicology Type Journal
Year 2023 Publication Science of The Total Environment Abbreviated Journal
Volume 879 Issue Pages 163169
Keywords Behavioral ecotoxicology Behavioral plasticity Behavioral reaction norms Chemical contaminants Interactive effects Multiple stressors
Abstract The potential for chemical contaminant exposure to interact with other stressors to affect animal behavioral responses to environmental variability is of mounting concern in the context of anthropogenic environmental change. We systematically reviewed the avian literature to evaluate evidence for contaminant-by-environment interactive effects on animal behavior, as birds are prominent models in behavioral ecotoxicology and global change research. We found that only 17 of 156 (10.9 %) avian behavioral ecotoxicological studies have explored contaminant-by-environment interactions. However, 13 (76.5 %) have found evidence for interactive effects, suggesting that contaminant-by-environment interactive effects on behavior are understudied but important. We draw on our review to develop a conceptual framework to understand such interactive effects from a behavioral reaction norm perspective. Our framework highlights four patterns in reaction norm shapes that can underlie contaminant-by-environment interactive effects on behavior, termed exacerbation, inhibition, mitigation and convergence. First, contamination can render individuals unable to maintain critical behaviors across gradients in additional stressors, exacerbating behavioral change (reaction norms steeper) and generating synergy. Second, contamination can inhibit behavioral adjustment to other stressors, antagonizing behavioral plasticity (reaction norms shallower). Third, a second stressor can mitigate (antagonize) toxicological effects of contamination, causing steeper reaction norms in highly contaminated individuals, with improvement of performance upon exposure to additional stress. Fourth, contamination can limit behavioral plasticity in response to permissive conditions, such that performance of more and less contaminated individuals converges under more stressful conditions. Diverse mechanisms might underlie such shape differences in reaction norms, including combined effects of contaminants and other stressors on endocrinology, energy balance, sensory systems, and physiological and cognitive limits. To encourage more research, we outline how the types of contaminant-by-environment interactive effects proposed in our framework might operate across multiple behavioral domains. We conclude by leveraging our review and framework to suggest priorities for future research.
Programme 388
Campaign
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0048-9697 ISBN Medium
Area Expedition Conference
Notes Approved yes
Call Number Serial 8625
Permanent link to this record
 

 
Author (up) Andrea Spolaor, Beatrice Moroni, Bartłomiej Luks, Adam Nawrot, Marco Roman, Catherine Larose, Łukasz Stachnik, Federica Bruschi, Krystyna Kozioł, Filip Pawlak, Clara Turetta, Elena Barbaro, Jean-Charles Gallet, David Cappelletti
Title Investigation on the Sources and Impact of Trace Elements in the Annual Snowpack and the Firn in the Hansbreen (Southwest Spitsbergen) Type Journal
Year 2021 Publication Frontiers in Earth Science Abbreviated Journal
Volume 8 Issue Pages
Keywords
Abstract We present a thorough evaluation of the water soluble fraction of the trace element composition (Ca, Sr, Mg, Na, K, Li, B, Rb, U, Ni, Co, As, Cs, Cd, Mo, Se, Eu, Ba, V, Ge, Ga, Cr, Cr, P, Ti, Mn, Zr, Ce, Zn, Fe, Gd, Y, Pb, Bi, Yb, Al, Nb, Er, Nd, Dy, Sm, Ho, Th, La, Lu, Tm, Pr, Tb, Fe, In, Tl) and their fluxes in the annual snowpack and the firn of the Hansbreen (a tidewater glacier terminating in the Hornsund fjord, southwest Spitsbergen). The trace element samples were obtained from a 3 m deep snow pit dug at the plateau of the glacier (450 m a.s.l.), and from a 2 m deep firn core collected from the bottom of the snow pit. The comparison of elemental fluxes and enrichment factors allowed us to constrain specific summer and wintertime deposition patterns of water soluble trace elements in the southern part of the Svalbard archipelago. Our results suggest that the chemical composition of the Hansbreen (and likely other glaciers where the summit is close to the equilibrium line) is mainly affected by summertime deposition of trace elements from local sources and some volatile elements, which may be transported into the Arctic when polar vortex is weak. The melting of the annual snowpack seems to have a minor influence on the overall chemical signature of the glacier ice.
Programme 1192
Campaign
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2296-6463 ISBN Medium
Area Expedition Conference
Notes Approved yes
Call Number Serial 8606
Permanent link to this record
 

 
Author (up) Andrea Spolaor, Hélène Angot, Marco Roman, Aurélien Dommergue, Claudio Scarchilli, Massimiliano Vardè, Massimo Del Guasta, Xanthi Pedeli, Cristiano Varin, Francesca Sprovieri, Olivier Magand, Michel Legrand, Carlo Barbante, Warren R. L. Cairns
Title Feedback mechanisms between snow and atmospheric mercury: Results and observations from field campaigns on the Antarctic plateau Type Journal
Year 2018 Publication Chemosphere Abbreviated Journal
Volume 197 Issue Pages 306-317
Keywords Antarctica Dome C Halogens Mercury Precipitation Snow
Abstract The Antarctic Plateau snowpack is an important environment for the mercury geochemical cycle. We have extensively characterized and compared the changes in surface snow and atmospheric mercury concentrations that occur at Dome C. Three summer sampling campaigns were conducted between 2013 and 2016. The three campaigns had different meteorological conditions that significantly affected mercury deposition processes and its abundance in surface snow. In the absence of snow deposition events, the surface mercury concentration remained stable with narrow oscillations, while an increase in precipitation results in a higher mercury variability. The Hg concentrations detected confirm that snowfall can act as a mercury atmospheric scavenger. A high temporal resolution sampling experiment showed that surface concentration changes are connected with the diurnal solar radiation cycle. Mercury in surface snow is highly dynamic and it could decrease by up to 90% within 4/6 h. A negative relationship between surface snow mercury and atmospheric concentrations has been detected suggesting a mutual dynamic exchange between these two environments. Mercury concentrations were also compared with the Br concentrations in surface and deeper snow, results suggest that Br could have an active role in Hg deposition, particularly when air masses are from coastal areas. This research presents new information on the presence of Hg in surface and deeper snow layers, improving our understanding of atmospheric Hg deposition to the snow surface and the possible role of re-emission on the atmospheric Hg concentration.
Programme 414,1028
Campaign
Address
Corporate Author Thesis Bachelor's thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0045-6535 ISBN 0045-6535 Medium
Area Expedition Conference
Notes Approved yes
Call Number Serial 7229
Permanent link to this record
 

 
Author (up) Andrea Tartari for the QUBIC Collaboration
Title QUBIC: The QU Bolometric Interferometer for Cosmology Type Conference - International - Communication
Year 2013 Publication Abbreviated Journal
Volume Issue Pages
Keywords
Abstract Contributed talk at AP-RASC'13 held in Taiwan, september 3-7 2013
Programme 915
Campaign
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved yes
Call Number Serial 4478
Permanent link to this record
 

 
Author (up) Andreas Prinzing, Wim A. Ozinga, Martin Brändle, Pierre-Emmanuel Courty, Françoise Hennion, Conrad Labandeira, Christian Parisod, Mickael Pihain, Igor V. Bartish
Title Benefits from living together? Clades whose species use similar habitats may persist as a result of eco-evolutionary feedbacks Type Journal
Year 2017 Publication New Phytologist Abbreviated Journal
Volume 213 Issue 1 Pages 66-82
Keywords assembly of present and fossil communities competition conservation biology enemy pressure and mutualism of coexisting species evolution and conservatism hybridization niche breadth
Abstract Contents 66 I. 67 II. 68 III. 69 IV. 70 V. 73 VI. 75 VII. 77 78 References 78 Summary Recent decades have seen declines of entire plant clades while other clades persist despite changing environments. We suggest that one reason why some clades persist is that species within these clades use similar habitats, because such similarity may increase the degree of co-occurrence of species within clades. Traditionally, co-occurrence among clade members has been suggested to be disadvantageous because of increased competition and enemy pressure. Here, we hypothesize that increased co-occurrence among clade members promotes mutualist exchange, niche expansion or hybridization, thereby helping species avoid population decline from environmental change. We review the literature and analyse published data for hundreds of plant clades (genera) within a well-studied region and find major differences in the degree to which species within clades occupy similar habitats. We tentatively show that, in clades for which species occupy similar habitats, species tend to exhibit increased co-occurrence, mutualism, niche expansion, and hybridization – and rarely decline. Consistently, throughout the geological past, clades whose species occupied similar habitats often persisted through long time-spans. Overall, for many plant species, the occupation of similar habitats among fellow clade members apparently reduced their vulnerability to environmental change. Future research should identify when and how this previously unrecognized eco-evolutionary feedback operates.
Programme 136,1116
Campaign
Address
Corporate Author Thesis Bachelor's thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1469-8137 ISBN Medium
Area Expedition Conference
Notes Approved yes
Call Number Serial 7738
Permanent link to this record
 

 
Author (up) Andreas Richter, Alexey A. Ekaykin, Matthias O. Willen, Vladimir Ya. Lipenkov, Andreas Groh, Sergey V. Popov, Mirko Scheinert, Martin Horwath, Reinhard Dietrich
Title Surface Mass Balance Models Vs. Stake Observations: A Comparison in the Lake Vostok Region, Central East Antarctica Type Journal
Year 2021 Publication Frontiers in Earth Science Abbreviated Journal
Volume 9 Issue Pages 388
Keywords
Abstract The surface mass balance (SMB) is very low over the vast East Antarctic Plateau, for example in the Vostok region, where the mean SMB is on the order of 20–35 kg m-2 a-1. The observation and modeling of spatio-temporal SMB variations are equally challenging in this environment. Stake measurements carried out in the Vostok region provide SMB observations over half a century (1970–2019). This unique data set is compared with SMB estimations of the regional climate models RACMO2.3p2 (RACMO) and MAR3.11 (MAR). We focus on the SMB variations over time scales from months to decades. The comparison requires a rigorous assessment of the uncertainty in the stake observations and the spatial scale dependence of the temporal SMB variations. Our results show that RACMO estimates of annual and multi-year SMB agree well with the observations. The regression slope between modelled and observed temporal variations is close to 1.0 for this model. SMB simulations by MAR are affected by a positive bias which amounts to 6 kg m-2 a-1 at Vostok station and 2 kg m-2 a-1 along two stake profiles between Lake Vostok and Ridge B. None of the models is capable to reproduce the seasonal distributions of SMB and precipitation. Model SMB estimates are used in assessing the ice-mass balance and sea-level contribution of the Antarctic Ice Sheet by the input-output method. Our results provide insights into the uncertainty contribution of the SMB models to such assessments.
Programme 411
Campaign
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2296-6463 ISBN Medium
Area Expedition Conference
Notes Approved yes
Call Number Serial 8030
Permanent link to this record
 

 
Author (up) Andreassen P.
Title A retrospective study of the endoparasitic Helminths present in faeces of Arctic Fox (Vulpes lagopus) from Northeastern Greenland Type Master 2
Year 2015 Publication Abbreviated Journal
Volume Issue Pages
Keywords
Abstract
Programme 1036
Campaign
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved yes
Call Number Serial 7284
Permanent link to this record
 

 
Author (up) Andrés Barbosa, Arvind Varsani, Virginia Morandini, Wray Grimaldi, Ralph E. T. Vanstreels, Julia I. Diaz, Thierry Boulinier, Meagan Dewar, Daniel González-Acuña, Rachael Gray, Clive R. McMahon, Gary Miller, Michelle Power, Amandine Gamble, Michelle Wille
Title Risk assessment of SARS-CoV-2 in Antarctic wildlife Type Journal
Year 2021 Publication Science of The Total Environment Abbreviated Journal
Volume 755 Issue Pages 143352
Keywords Antarctica Coronavirus COVID-19 Mitigation measures Reverse zoonoses Transmission
Abstract The coronavirus disease 2019 (COVID-19) pandemic is caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). This pathogen has spread rapidly across the world, causing high numbers of deaths and significant social and economic impacts. SARS-CoV-2 is a novel coronavirus with a suggested zoonotic origin with the potential for cross-species transmission among animals. Antarctica can be considered the only continent free of SARS-CoV-2. Therefore, concerns have been expressed regarding the potential human introduction of this virus to the continent through the activities of research or tourism to minimise the effects on human health, and the potential for virus transmission to Antarctic wildlife. We assess the reverse-zoonotic transmission risk to Antarctic wildlife by considering the available information on host susceptibility, dynamics of the infection in humans, and contact interactions between humans and Antarctic wildlife. The environmental conditions in Antarctica seem to be favourable for the virus stability. Indoor spaces such as those at research stations, research vessels or tourist cruise ships could allow for more transmission among humans and depending on their movements between different locations the virus could be spread across the continent. Among Antarctic wildlife previous in silico analyses suggested that cetaceans are at greater risk of infection whereas seals and birds appear to be at a low infection risk. However, caution needed until further research is carried out and consequently, the precautionary principle should be applied. Field researchers handling animals are identified as the human group posing the highest risk of transmission to animals while tourists and other personnel pose a significant risk only when in close proximity (< 5 m) to Antarctic fauna. We highlight measures to reduce the risk as well as identify of knowledge gaps related to this issue.
Programme 1151
Campaign
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0048-9697 ISBN Medium
Area Expedition Conference
Notes Approved yes
Call Number Serial 7960
Permanent link to this record
 

 
Author (up) Andrew D Foote, Alana Alexander, Lisa T Ballance, Rochelle Constantine, Bárbara Galletti Vernazzani Muñoz, Christophe Guinet, Kelly M Robertson, Mikkel-Holger S Sinding, Mariano Sironi, Paul Tixier, John Totterdell, Jared R Towers, Rebecca Wellard, Robert L Pitman, Phillip A Morin
Title “Type D” killer whale genomes reveal long-term small population size and low genetic diversity Type Journal
Year 2023 Publication Journal of Heredity Abbreviated Journal
Volume 114 Issue 2 Pages 94-109
Keywords
Abstract Genome sequences can reveal the extent of inbreeding in small populations. Here, we present the first genomic characterization of type D killer whales, a distinctive eco/morphotype with a circumpolar, subantarctic distribution. Effective population size is the lowest estimated from any killer whale genome and indicates a severe population bottleneck. Consequently, type D genomes show among the highest level of inbreeding reported for any mammalian species (FROH ≥ 0.65). Detected recombination cross-over events of different haplotypes are up to an order of magnitude rarer than in other killer whale genomes studied to date. Comparison of genomic data from a museum specimen of a type D killer whale that stranded in New Zealand in 1955, with 3 modern genomes from the Cape Horn area, reveals high covariance and identity-by-state of alleles, suggesting these genomic characteristics and demographic history are shared among geographically dispersed social groups within this morphotype. Limitations to the insights gained in this study stem from the nonindependence of the 3 closely related modern genomes, the recent coalescence time of most variation within the genomes, and the nonequilibrium population history which violates the assumptions of many model-based methods. Long-range linkage disequilibrium and extensive runs of homozygosity found in type D genomes provide the potential basis for both the distinctive morphology, and the coupling of genetic barriers to gene flow with other killer whale populations.
Programme 109
Campaign
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1465-7333 ISBN Medium
Area Expedition Conference
Notes Approved yes
Call Number Serial 8557
Permanent link to this record