Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Dj Léandri-Breton, A Tarroux, K Elliott, P Legagneux, F Angelier, P Blévin, Vs Bråthen, P Fauchald, A Goutte, W Jouanneau, S Tartu, B Moe, O Chastel doi  isbn
openurl 
  Title Long-term tracking of an Arctic-breeding seabird indicates high fidelity for pelagic wintering areas Type Journal
  Year 2021 Publication Marine Ecology Progress Series Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract Site fidelity is driven by predictable resource distributions in time and space. However, intrinsic factors related to an individual’s physiology and life-history traits can contribute to consistent foraging behaviour and movement patterns. Using 11 years of continuous geolocation tracking data (fall 2008 to spring 2019), we investigated spatiotemporal consistency in non-breeding movements in a pelagic seabird population of black-legged kittiwakes (Rissa tridactyla) breeding in the High Arctic (Svalbard). Our objective was to assess the relative importance of spatial versus temporal repeatability behind inter-annual movement consistency during winter. Most kittiwakes used pelagic regions of the western North Atlantic. Winter site fidelity was high both within and across individuals and at meso (100-1000 km) and macro scales (>1000 km). Spatial consistency in non-breeding movement was higher within than among individuals, suggesting that site fidelity might emerge from individuals’ memory to return to locations with predictable resource availability. Consistency was also stronger in space than in time, suggesting that it was driven by consistent resource pulses that may vary in time more so than in space. Nonetheless, some individuals displayed more flexibility by adopting a strategy of itinerancy during winter, and the causes of this flexibility are unclear. Specialization for key wintering areas can indicate vulnerability to environmental perturbations, with winter survival and carry-over effects arising from winter conditions as potential drivers of population dynamics  
  Programme 330  
  Campaign  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN 0171-8630, 1616-1599 Medium  
  Area (down) Expedition Conference  
  Notes Approved yes  
  Call Number Serial 7988  
Permanent link to this record
 

 
Author Afsaneh Mohammadzaheri, Karin Sigloch, Kasra Hosseini, Mitchell G. Mihalynuk doi  openurl
  Title Subducted Lithosphere Under South America From Multifrequency P Wave Tomography Type Journal
  Year 2021 Publication Journal of Geophysical Research: Solid Earth Abbreviated Journal  
  Volume 126 Issue 6 Pages e2020JB020704  
  Keywords Andes intra-arc intra-oceanic subduction seismic tomography South America structure of the mantel  
  Abstract We analyze mantle structure under South America in the DETOX-P1 seismic tomography model, a global-scale, multifrequency inversion of teleseismic P waves. DETOX-P1 inverts the most extensive data set of broadband, waveform-based traveltime measurements to date, complemented by analyst-picked traveltimes from the ISC-EHB catalog. The mantle under South America is sampled by ∼665,000 cross-correlation traveltimes measured on 529 South American broadband stations and on 5,389 stations elsewhere. By their locations, depths, and geometries, we distinguish four high-velocity provinces under South America, interpreted as subducted lithosphere (“slabs”). The deepest (∼1,800–1,200 km depth) and shallowest (<600 km) slab provinces are observed beneath the Andean Cordillera near the continent’s northwest coast. At intermediate depths (1,200–900 km, 900–600 km), two slab provinces are observed farther east, under Brazil, Bolivia and Venezuela, with links to the Caribbean. We interpret the slabs relative to South America’s paleo-position over time, exploring the hypothesis that slabs sank essentially vertically after widening by viscous deformation in the mantle transition zone. The shallowest slab province carries the geometric imprint of the continental margin and represents ocean-beneath-continent subduction during Cenozoic times. The deepest, farthest west slab complex formed under intra-oceanic trenches during late Jurassic and Cretaceous times, far west of South America’s paleo-position adjoined to Africa. The two intermediate slab complexes record the Cretaceous transition from westward intra-oceanic subduction to eastward subduction beneath South America. This geophysical inference matches geologic records of the transition from Jura-Cretaceous, extensional “intra-arc” basins to basin inversion and onset of the modern Andean arc ∼85 Ma.  
  Programme 133  
  Campaign  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2169-9356 ISBN Medium  
  Area (down) Expedition Conference  
  Notes Approved yes  
  Call Number Serial 7991  
Permanent link to this record
 

 
Author L A Ermert, K Sager, T Nissen-Meyer, A Fichtner doi  openurl
  Title Multifrequency inversion of global ambient seismic sources Type Journal
  Year 2021 Publication Geophysical Journal International Abbreviated Journal  
  Volume 225 Issue 3 Pages 1616-1623  
  Keywords  
  Abstract We develop and apply a method to constrain the space- and frequency-dependent location of ambient noise sources. This is based on ambient noise cross-correlation inversion using numerical wavefield simulations, which honour 3-D crustal and mantle structure, ocean loading and finite-frequency effects. In the frequency range from 3 to 20 mHz, our results constrain the global source distribution of the Earth’s hum, averaged over the Southern Hemisphere winter season of 9 yr. During Southern Hemisphere winter, the dominant sources are largely confined to the Southern Hemisphere, the most prominent exception being the Izu-Bonin-Mariana arc, which is the most active source region between 12 and 20 mHz. Generally, strong hum sources seem to be associated with either coastlines or bathymetric highs. In contrast, deep ocean basins are devoid of hum sources. While being based on the relatively small number of STS-1 broad-band stations that have been recording continuously from 2004 to 2013, our results demonstrate the practical feasibility of a frequency-dependent noise source inversion that accounts for the complexities of 3-D wave propagation. It may thereby improve full-waveform ambient noise inversions and our understanding of the physics of noise generation.  
  Programme 133  
  Campaign  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0956-540X ISBN Medium  
  Area (down) Expedition Conference  
  Notes Approved yes  
  Call Number Serial 7992  
Permanent link to this record
 

 
Author Jun Xie, Risheng Chu, Sidao Ni doi  openurl
  Title Evaluating Global Tomography Models With Antipodal Ambient Noise Cross-Correlation Functions Type Journal
  Year 2021 Publication Journal of Geophysical Research: Solid Earth Abbreviated Journal  
  Volume 126 Issue 3 Pages e2020JB020444  
  Keywords ambient noise cross-correlation functions antipodal surface waves mantle heterogeneity tomography model evaluation  
  Abstract It is essential to evaluate global tomography models, which provide important information for understanding Earth's structure and dynamics. Long-period surface waves propagating between antipodal stations are good candidates for this purpose since they depend on global-scale velocity variations in the upper mantle. In this study, we extract minor-arc and major-arc Rayleigh waves from ambient noise cross correlations between GEOSCOPE station AIS and ∼1,800 USArray stations near the antipode of AIS. We identify two Rayleigh-wave-focusing regions and simulate the observed maximum amplitude pattern at the antipodal region using synthetic surface waves based on three global tomography models. Our simulations suggest that seismic heterogeneity of the tomography models need to be inflated by a factor of 2–3 in oceanic regions to explain the observed focusing pattern of surface waves near the antipodal region.  
  Programme 133  
  Campaign  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2169-9356 ISBN Medium  
  Area (down) Expedition Conference  
  Notes Approved yes  
  Call Number Serial 7993  
Permanent link to this record
 

 
Author R. Olmi, M. Bittelli, G. Picard, L. Arnaud, A. Mialon, S. Priori doi  openurl
  Title Investigating the influence of the grain size and distribution on the macroscopic dielectric properties of Antarctic firn Type Journal
  Year 2021 Publication Cold Regions Science and Technology Abbreviated Journal  
  Volume 185 Issue Pages 103254  
  Keywords Antarctica Close−off Dielectric measurements Dielectric model Firn Full wave EM simulations Ice cores  
  Abstract This study is based on the analysis of detailed measurements of firn dielectric properties performed in Antarctica through coring down to 106 m. Dielectric measurements in the frequency band (0.4–2.5 GHz) have been carried out using an open−resonator probe. Density was also measured for the same samples. The experimental results confirmed the well−known dependence of the real part of permittivity ε′ on depth and density, showing an increase of ε′ with density. The imaginary part also increases with depth with a rather complex dependence on frequency, probably due to the presence of salts or impurities. The analysis of the experimental data was performed by implementing 3D and 2D full wave numerical models, to simulate a mixture of firn crystals at prescribed densities, corresponding to the measured densities on the ice cores. The numerical analysis of the ensemble of inclusions showed that the usual symmetric formulae used for modeling ice dielectric properties agree with the average results of the simulation, but they are not able to explain the spreading of the measured data at given density. A dielectric model was then developed allowing for quantification of the dependence of dielectric properties on density, by combining two models: one consisting in firn crystals into an air host, the other assuming the presence of air inclusions into a homogeneous firn host. The weighted equation is based on the volume fraction. A simple geometric shape (ellipsoidal) is assumed for both ice crystals and air inclusions. This kind of shape is reasonable for the purpose of the dielectric study. The result is a mixture, smoothly changing from firn particles in air (low density) to air bubbles in an ice matrix (high density). A statistical analysis has been accomplished to investigate the dependence of the dielectric properties on the geometrical arrangement of the inclusions. For that purpose, a large number of simulations with different arrangements (micro−states) giving rise to the same average density (macro−states) has been carried out. The permittivity change due to micro−state variability appears to be at least two−three times the model variation due to density alone, and comparable to the measured variability at a given depth, suggesting that firn structure has a significant effect on the dielectric properties.  
  Programme 1110  
  Campaign  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0165-232X ISBN Medium  
  Area (down) Expedition Conference  
  Notes Approved yes  
  Call Number Serial 7995  
Permanent link to this record
 

 
Author A. Baranov, R. Tenzer, A. Morelli doi  openurl
  Title Updated Antarctic crustal model Type Journal
  Year 2021 Publication Gondwana Research Abbreviated Journal  
  Volume 89 Issue Pages 1-18  
  Keywords Antarctica Crustal structure Gondwana Sediments  
  Abstract We use seismic data together with a subglacial bedrock relief from the BEDMAP2 database to obtain a new three-layer model of the consolidated (crystalline) crust of Antarctica that locally improves the global seismic crustal model CRUST1.0. We collect suitable data for constructing crustal layers, analyse them and build maps of the crustal layer thickness and seismic velocities. We use the subglacial relief according to a tectonic configuration and then interpolate data using a statistical kriging method. The P-wave velocity information from old seismic profiles have been supplemented with the new shear-wave velocity models. We adjust the thickness of crustal layers by multiplying a total crustal thickness by a percentage ratio of each individual layer at each point. Our results reveal large variations in seismic velocities between different crustal blocks forming Antarctica. The most pronounced differences exist between East and West Antarctica. In East Antarctica, a high P-wave velocity (vP > 7 km/s) layer in the lower crust is absent. The P-wave velocity in the lower crust changes from 6.1 km/s beneath the Lambert Rift to 6.9 km/s beneath the Wilkes Basin. In West Antarctica, a thick mafic lower crust is characterized by large P-wave velocities, ranging from 7.0 km/s under the Ross Sea to 7.3 km/s under the Byrd Basin. In contrast, velocities in the lower crust beneath the Transantarctic and Ellsworth-Whitmore Mountains are ~6.8 km/s. The P-wave velocities in the upper crust in East Antarctica are within the range 5.5–6.4 km/s. The upper crust of West Antarctica is characterized by the P-wave velocities of 5.6–6.3 km/s. The P-wave velocities in the middle crust vary within 5.9–6.6 km/s in East Antarctica and within 6.3–6.5 km/s in West Antarctica. A low-velocity layer (5.8–5.9 km/s) is detected at depth of ~20–25 km beneath the Princes Elizabeth Land.  
  Programme 133  
  Campaign  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1342-937X ISBN Medium  
  Area (down) Expedition Conference  
  Notes Approved yes  
  Call Number Serial 7994  
Permanent link to this record
 

 
Author Fanny Larue, Ghislain Picard, Jérémie Aublanc, Laurent Arnaud, Alvaro Robledano-Perez, Emmanuel LE Meur, Vincent Favier, Bruno Jourdain, Joel Savarino, Pierre Thibaut doi  openurl
  Title Radar altimeter waveform simulations in Antarctica with the Snow Microwave Radiative Transfer Model (SMRT) Type Journal
  Year 2021 Publication Remote Sensing of Environment Abbreviated Journal  
  Volume 263 Issue Pages 112534  
  Keywords Antarctic ice sheet Field measurements Modeling Radar altimetry Remote sensing SMRT Waveform  
  Abstract Radar altimeters are important tools to monitor the volume of the ice sheets. The penetration of radar waves in the snowpack is a major source of uncertainty to retrieve surface elevation. To correct this effect, a better understanding of the sensitivity of the radar waveforms to snow properties is needed. Here, we present an extension of the Snow Model Radiative Transfer (SMRT) to compute radar waveforms and conduct a series of simulations on the Antarctic ice sheet. SMRT is driven by snow and surface roughness properties measured over a large latitudinal range during two field campaigns on the Antarctic Plateau. These measurements show that the snowpack is rougher, denser, less stratified, warmer, and has smaller snow grains near the coast than on the central Plateau. These simulations are compared to satellite observations in the Ka, Ku, and S bands. SMRT reproduces the observed waveforms well. For all sites and all sensors, the main contribution comes from the surface echo. The echo from snow grains (volume scattering) represents up to 40% of the amplitude of the total waveform power in the Ka band, and less at the lower frequencies. The highest amplitude is observed on the central Plateau due to the combination of higher reflection from the surface, higher scattering by snow grains in the Ka and Ku bands, and higher inter-layer reflections in the S band. In the Ka band, the wave penetrates in the snowpack less deeply on the central Plateau than near the coast because of the strong scattering caused by the larger snow grains. The opposite is observed in the S band, the wave penetrates deeper on the central Plateau because of the lower absorption due to the lower snow temperatures. The elevation bias caused by wave penetration into the snowpack show a constant bias of 10 cm for all sites in the Ka band, and a bias of 11 cm, and 21 cm in the Ku band for sites close to the coast and the central Plateau, respectively. Now that SMRT is performing waveform simulations, further work will address how the snowpack properties affect the parameters retrieved by more advanced retracking algorithms such as ICE-2 for different snow cover surfaces.  
  Programme 1110  
  Campaign  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0034-4257 ISBN Medium  
  Area (down) Expedition Conference  
  Notes Approved yes  
  Call Number Serial 7997  
Permanent link to this record
 

 
Author Pierre-Yves Pascal, Yann Reynaud, Elie Poulin, Chantal De Ridder, Thomas Saucede doi  openurl
  Title Feeding in spatangoids: the case of Abatus Cordatus in the Kerguelen Islands (Southern Ocean) Type Journal
  Year 2021 Publication Polar Biology Abbreviated Journal  
  Volume 44 Issue 4 Pages 795-808  
  Keywords  
  Abstract Irregular urchins exclusively live in marine soft bottom habitats, dwelling either upon or inside sediments and selectively picking up sediment grains and organic particles, or swallowing bulk sediment to feed on the associated organic matter. The exact food source and dietary requirements of most irregular echinoids, however, remain incompletely understood. The schizasterid species Abatus cordatus (Verrill, 1876) is a sub-Antarctic spatangoid that is endemic to the Kerguelen. The feeding behaviour of A. cordatus was investigated using simultaneously metabarcoding and stable isotope approaches. Comparison of ingested and surrounding sediments by metabarcoding revealed a limited selective ingestion of prokaryotes and eukaryotes by the urchin. Compared to surrounding sediments, the gut content had (i) higher carbon and nitrogen concentrations potentially due to selective ingestion of organic matter and/or the sea urchin mucus secretion and (ii) δ15N enrichment due to the selective assimilation of lighter isotope in the gut. Feeding experiments were performed using 13C and 15 N-enriched sediments in aquariums. The progression of stable isotope enrichment in proximal and distal parts of the digestive track of A. cordatus revealed that all particles are not similarly transported likely due to siphon functioning. Ingestion of water with associated dissolved and particulate organic matter should play an important role in urchin nutrition. A. cordatus had a gut resident time fluctuating between 76 and 101 h and an ingestion rate of 36 mg dry sediment h−1 suggesting that dense populations of the species may play a key ecological role through bioturbation in soft bottom shallow-water habitats of the Kerguelen Islands.  
  Programme 1044  
  Campaign  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1432-2056 ISBN Medium  
  Area (down) Expedition Conference  
  Notes Approved yes  
  Call Number Serial 8000  
Permanent link to this record
 

 
Author Margot Arnould-Pétré, Charlène Guillaumot, Bruno Danis, Jean-Pierre Féral, Thomas Saucède doi  openurl
  Title Individual-based model of population dynamics in a sea urchin of the Kerguelen Plateau (Southern Ocean), Abatus cordatus, under changing environmental conditions Type Journal
  Year 2021 Publication Ecological Modelling Abbreviated Journal  
  Volume 440 Issue Pages 109352  
  Keywords Climate change Dynamic energy budget Ecological modelling Endemic echinoderm Individual-based model Kerguelen Model sensitivity  
  Abstract The Kerguelen Islands are part of the French Southern Territories, located at the limit of the Indian and Southern oceans. They are highly impacted by climate change, and coastal marine areas are particularly at risk. Assessing the responses of species and populations to environmental change is challenging in such areas for which ecological modelling can constitute a helpful approach. In the present work, a DEB-IBM model (Dynamic Energy Budget – Individual-Based Model) was generated to simulate and predict population dynamics in an endemic and common benthic species of shallow marine habitats of the Kerguelen Islands, the sea urchin Abatus cordatus. The model relies on a dynamic energy budget model (DEB) developed at the individual level. Upscaled to an individual-based population model (IBM), it then enables to model population dynamics through time as a result of individual physiological responses to environmental variations. The model was successfully built for a reference site to simulate the response of populations to variations in food resources and temperature. Then, it was implemented to model population dynamics at other sites and for the different IPCC climate change scenarios RCP 2.6 and 8.5. Under present-day conditions, models predict a more determinant effect of food resources on population densities, and on juvenile densities in particular, relative to temperature. In contrast, simulations predict a sharp decline in population densities under conditions of IPCC scenarios RCP 2.6 and RCP 8.5 with a determinant effect of water warming leading to the extinction of most vulnerable populations after a 30-year simulation time due to high mortality levels associated with peaks of high temperatures. Such a dynamic model is here applied for the first time to a Southern Ocean benthic and brooding species and offers interesting prospects for Antarctic and sub-Antarctic biodiversity research. It could constitute a useful tool to support conservation studies in these remote regions where access and bio-monitoring represent challenging issues.  
  Programme 1044  
  Campaign  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0304-3800 ISBN Medium  
  Area (down) Expedition Conference  
  Notes Approved yes  
  Call Number Serial 8002  
Permanent link to this record
 

 
Author Daniela Levicoy, Sebastián Rosenfeld, Leyla Cárdenas doi  openurl
  Title Divergence time and species delimitation of microbivalves in the Southern Ocean: the case of Kidderia species Type Journal
  Year 2021 Publication Polar Biology Abbreviated Journal  
  Volume 44 Issue 7 Pages 1365-1377  
  Keywords  
  Abstract The systematics of Subantarctic and Antarctic near-shore marine benthic invertebrates requires major revision and highlights the necessity to incorporate additional sources of information in the specimen identification chart in the Southern Ocean (SO). In this study, we aim to improve our understanding of the biodiversity of Kidderia (Dall 1876) through molecular and morphological comparisons of Antarctic and Subantarctic taxa. The microbivalves of the genus Kidderia are small brooding organisms that inhabit intertidal and shallow subtidal rocky ecosystems. This genus represents an interesting model to test the vicariance and dispersal hypothesis in the biogeography of the SO. However, the description of Kidderia species relies on a few morphological characters and biogeographic records that raise questions about the true diversity in the group. Here we will define the specimens collected with genetic tools, delimiting their respective boundaries across provinces of the SO, validating the presence of two species of Kidderia. Through the revision of taxonomic issues and species delimitation, it was possible to report that the Antarctic species is Kidderia subquadrata and the species recorded in the Subantarctic islands Diego Ramirez, South Georgia and the Kerguelen Archipelago is Kidderia minuta. The divergence time estimation suggests the origin and diversification of Kidderia lineages are related to historical vicariant processes probably associated with the separation of the continental landmasses close to the late Eocene.  
  Programme 1044  
  Campaign  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1432-2056 ISBN Medium  
  Area (down) Expedition Conference  
  Notes Approved yes  
  Call Number Serial 8004  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print