Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Pengcheng Wang, Natacha B. Bernier, Keith R. Thompson, Tsubasa Kodaira doi  openurl
  Title Evaluation of a global total water level model in the presence of radiational S2 tide Type Journal
  Year 2021 Publication Ocean Modelling Abbreviated Journal  
  Volume 168 Issue Pages 101893  
  Keywords NEMO Radiational and gravitational tide Storm surge Tidal nudging Total water level  
  Abstract (up)  
  Programme 688  
  Campaign  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1463-5003 ISBN Medium  
  Area Expedition Conference  
  Notes Approved yes  
  Call Number Serial 8356  
Permanent link to this record
 

 
Author doi  openurl
  Title Seabird population changes following mammal eradication at oceanic Saint-Paul Island, Indian Ocean Type Journal
  Year 2021 Publication Journal for Nature Conservation Abbreviated Journal  
  Volume 63 Issue Pages 126049  
  Keywords Island restoration Petrels Population growth rate Rats Shearwaters Terns  
  Abstract (up)  
  Programme 109  
  Campaign  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1617-1381 ISBN Medium  
  Area Expedition Conference  
  Notes Approved yes  
  Call Number Serial 8459  
Permanent link to this record
 

 
Author doi  openurl
  Title Biological invasions in France: Alarming costs and even more alarming knowledge gaps Type Journal
  Year 2021 Publication NeoBiota Abbreviated Journal  
  Volume 67 Issue Pages 191-224  
  Keywords  
  Abstract (up)  
  Programme 136  
  Campaign  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1314-2488 ISBN Medium  
  Area Expedition Conference  
  Notes Approved yes  
  Call Number Serial 8094  
Permanent link to this record
 

 
Author doi  openurl
  Title Diel at-sea activity of two species of great albatrosses: the ontogeny of foraging and movement behaviour Type Journal
  Year 2021 Publication Journal of Avian Biology Abbreviated Journal  
  Volume 52 Issue 2 Pages  
  Keywords albatross diel activity pattern Diomedea flight behavior foraging activity moon illumination night activity seabirds  
  Abstract (up) The first year of life is a period of high mortality in animals. Reduced foraging capacities of naive individuals might be the primary cause of their mortality. These capacities are supposed to be progressively acquired during the first months of life. In this study, we investigate the ontogeny of flight capacities, by day and night, of first-year individuals, and compare it with adults from two closely related species of great albatrosses: Amsterdam Diomedea amsterdamensis and wandering Diomedea exulans albatrosses which forage in different environmental conditions. We used 71 tracks of 71 juvenile birds and 141 of 116 incubating adults to compare both age categories. In order to explore the effect of moon light on night activity, we elaborated a new formula which improves the precision of the proxy of moon illumination. By day, we found that juveniles of both species reach some adult foraging capacities in less than two months. By night, albatrosses have reduced activity increasing during the first weeks at sea for juveniles and changing in accordance with moon illumination for both juveniles and adults. A peak of flight activity at dawn and dusk was apparent for both species. Interspecific comparison underlined that Amsterdam albatrosses were more active than wandering albatrosses, suggesting a difference in food and foraging strategy. Overall, we highlighted how life history traits, environmental conditions and time of the day affect the foraging activity of two related species of seabirds.  
  Programme 109  
  Campaign  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1600-048X ISBN Medium  
  Area Expedition Conference  
  Notes Approved yes  
  Call Number Serial 7943  
Permanent link to this record
 

 
Author doi  openurl
  Title Evolutionary Genetics of Borrelia Type Journal
  Year 2021 Publication Current issues in molecular biology Abbreviated Journal  
  Volume 42 Issue Pages 97-112  
  Keywords  
  Abstract (up) The genus Borrelia consists of evolutionarily and genetically diverse bacterial species that cause a variety of diseases in humans and domestic animals. These vector-borne spirochetes can be classified into two major evolutionary groups, the Lyme borreliosis clade and the relapsing fever clade, both of which have complex transmission cycles during which they interact with multiple host species and arthropod vectors. Molecular, ecological, and evolutionary studies have each provided significant contributions towards our understanding of the natural history, biology and evolutionary genetics of Borrelia species; however, integration of these studies is required to identify the evolutionary causes and consequences of the genetic variation within and among Borrelia species. For example, molecular and genetic studies have identified the adaptations that maximize fitness components throughout the Borrelia lifecycle and enhance transmission efficacy but provide limited insights into the evolutionary pressures that have produced them. Ecological studies can identify interactions between Borrelia species and the vertebrate hosts and arthropod vectors they encounter and the resulting impact on the geographic distribution and abundance of spirochetes but not the genetic or molecular basis underlying these interactions. In this review we discuss recent findings on the evolutionary genetics from both of the evolutionarily distinct clades of Borrelia species. We focus on connecting molecular interactions to the ecological processes that have driven the evolution and diversification of Borrelia species in order to understand the current distribution of genetic and molecular variation within and between Borrelia species.  
  Programme 333  
  Campaign  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1467-3037 ISBN Medium  
  Area Expedition Conference  
  Notes Approved yes  
  Call Number Serial 8521  
Permanent link to this record
 

 
Author Damien Ertz, Neil Sanderson, Marc Lebouvier doi  openurl
  Title Thelopsis challenges the generic circumscription in the Gyalectaceae and brings new insights to the taxonomy of Ramonia Type Journal
  Year 2021 Publication The Lichenologist Abbreviated Journal  
  Volume 53 Issue 1 Pages 45-61  
  Keywords Arthoniales Gyalectales lichen multispory phylogeny  
  Abstract (up) The genus Thelopsis was classified in the family Stictidaceae but its systematic position has never been investigated by molecular methods. In order to determine its family placement and to test its monophyly, fungal DNA of recent collections of Thelopsis specimens was sequenced. Phylogenetic analyses using nuLSU, RPB2 and mtSSU sequences reveal that members of Thelopsis form a monophyletic group within the genus Gyalecta as currently accepted. The placement of Thelopsis, including the generic type T. rubella, within the genus Gyalecta challenges the generic circumscription of this group because Thelopsis is well recognized by the combination of morphological characters: perithecioid ascomata, well-developed periphysoids, polysporous asci and small, few-septate ellipsoid-oblong ascospores. The sterile sorediate Opegrapha corticola is also placed in the Gyalectaceae as sister species to Thelopsis byssoidea + T. rubella. Ascomata of O. corticola are illustrated for the first time and support its placement in the genus Thelopsis. The hypothesis that O. corticola might represent the sorediate fertile morph of T. rubella is not confirmed because the species is phylogenetically and morphologically distinct. Thelopsis is recovered as polyphyletic, with T. melathelia being placed as sister species to Ramonia. The new combinations Thelopsis corticola (Coppins & P. James) Sanderson & Ertz comb. nov. and Ramonia melathelia (Nyl.) Ertz comb. nov. are introduced and a new species of Gyalecta, G. amsterdamensis Ertz, is described from Amsterdam and Saint-Paul Islands, characterized by a sterile thallus with discrete soralia. Petractis luetkemuelleri and P. nodispora are accommodated in the new genus Neopetractis, differing from the generic type (P. clausa) by having a different phylogenetic position and a different photobiont. Francisrosea bicolor Ertz & Sanderson gen. & sp. nov. is described for a sterile sorediate lichen somewhat similar to Opegrapha corticola but having an isolated phylogenetic position as sister to a clade including Gyalidea praetermissa and the genera Neopetractis and Ramonia. Gyalecta farlowii, G. nidarosiensis and G. carneola are placed in a molecular phylogeny for the first time. The taxonomic significance of morphological characters in Gyalectaceae is discussed.  
  Programme 1167  
  Campaign  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0024-2829, 1096-1135 ISBN Medium  
  Area Expedition Conference  
  Notes Approved yes  
  Call Number Serial 7078  
Permanent link to this record
 

 
Author doi  openurl
  Title Type Journal
  Year 2021 Publication Remote Sensing Abbreviated Journal  
  Volume 13 Issue 10 Pages 1978  
  Keywords arctic cryosphere moraine photogrammetry snow water equivalent snowcover spatial dynamics UAV-SfM  
  Abstract (up) The global climate shift currently underway has significant impacts on both the quality and quantity of snow precipitation. This directly influences the spatial variability of the snowpack as well as cumulative snow height. Contemporary glacier retreat reorganizes periglacial morphology: while the glacier area decreases, the moraine area increases. The latter is becoming a new water storage potential that is almost as important as the glacier itself, but with considerably more complex topography. Hence, this work fills one of the missing variables of the hydrological budget equation of an arctic glacier basin by providing an estimate of the snow water equivalent (SWE) of the moraine contribution. Such a result is achieved by investigating Structure from Motion (SfM) image processing that is applied to pictures collected from an Unmanned Aerial Vehicle (UAV) as a method for producing snow depth maps over the proglacial moraine area. Several UAV campaigns were carried out on a small glacial basin in Spitsbergen (Arctic): the measurements were made at the maximum snow accumulation season (late April), while the reference topography maps were acquired at the end of the hydrological year (late September) when the moraine is mostly free of snow. The snow depth is determined from Digital Surface Model (DSM) subtraction. Utilizing dedicated and natural ground control points for relative positioning of the DSMs, the relative DSM georeferencing with sub-meter accuracy removes the main source of uncertainty when assessing snow depth. For areas where snow is deposited on bare rock surfaces, the correlation between avalanche probe in-situ snow depth measurements and DSM differences is excellent. Differences in ice covered areas between the two measurement techniques are attributed to the different quantities measured: while the former only measures snow accumulation, the latter includes all of the ice accumulation during winter through which the probe cannot penetrate, in addition to the snow cover. When such inconsistencies are observed, icing thicknesses are the source of the discrepancy that is observed between avalanche probe snow cover depth measurements and differences of DSMs.  
  Programme 1108  
  Campaign  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved yes  
  Call Number Serial 4442  
Permanent link to this record
 

 
Author doi  openurl
  Title Comparison of interferometer calibration techniques for improved SuperDARN elevation angles Type Journal
  Year 2021 Publication Polar Science Abbreviated Journal  
  Volume 28 Issue Pages 100638  
  Keywords Geolocation HF radar Interferometer calibration Ionosphere SuperDARN  
  Abstract (up) The high frequency radars in the Super Dual Auroral Radar Network (SuperDARN) estimate the elevation angles of returned backscatter using interferometric techniques. These elevation angles allow the ground range to the scattering point to be estimated, which is crucial for the accurate geolocation of ionospheric measurements. For elevation angles to be accurately estimated, it is important to calibrate the interferometer measurements by determining the difference in the signal time delays caused by the difference in the electrical path lengths from the main array and the interferometer array to the point at which the signals are correlated. This time delay is known as tdiff. Several methods have been proposed to estimate tdiff using historical observations; these methods are summarised in this paper. Comparisons of the tdiff estimates from the different calibration methods are presented and sources of uncertainty discussed. The effect of errors in the estimated tdiff value on the accuracy of geolocation is evaluated and discussed. The paper concludes with a series of recommendations for both scientific SuperDARN data users and SuperDARN radar operators.  
  Programme 312  
  Campaign  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1873-9652 ISBN Medium  
  Area Expedition Conference  
  Notes Approved yes  
  Call Number Serial 8088  
Permanent link to this record
 

 
Author doi  openurl
  Title Comparative egg attendance patterns of incubating polar petrels Type Journal
  Year 2021 Publication Animal Biotelemetry Abbreviated Journal  
  Volume 9 Issue 1 Pages 17  
  Keywords Biologging Cape petrel Egg neglect Egg temperatures Egg turning rates Snow petrel  
  Abstract (up)  
  Programme 109  
  Campaign  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2050-3385 ISBN Medium  
  Area Expedition Conference  
  Notes Approved yes  
  Call Number Serial 8091  
Permanent link to this record
 

 
Author Simon Thomas, Pierre-Louis Blelly, Aurelie Marchaudon, Julian Eisenbeis, Samuel Bird openurl 
  Title Simulating the Response of the Ionosphere in IPIM to Extreme Space Weather Type Communication
  Year 2021 Publication AGU Fall Meeting 2021, 13-17 December 2021, New Orleans, USA Abbreviated Journal  
  Volume 2021 Issue Pages SM45C-2291  
  Keywords  
  Abstract (up) The IRAP Plasmasphere Ionosphere Model (IPIM) is an ionospheric model which describes the transport equations of ionospheric plasma species along magnetic closed field lines. As input, the previous iteration of IPIM used basic models to provide estimations of the solar wind conditions, convection, and precipitation within the ionosphere. In this presentation, we discuss the development of a new operational version of IPIM as part of the EUHFORIA project to monitor and forecast space weather conditions and hazards. The developments of the model include using in-situ solar wind observations from the OMNI data set, ionospheric radar data of plasma motions from the Super Dual Auroral Radar Network (SuperDARN), and precipitation data from the Ovation model, as inputs to the model. A new conductivity module for low latitudes has also been developed for help in the simulation of geomagnetically induced currents. We present the first results from the latest IPIM version which explore the ionosphere's response to different solar wind conditions, before focussing on an extreme coronal mass ejection on 14th July 2012 with clear magnetic cloud and southward magnetic field. For this event, we explore simulations of important plasma properties of the ionosphere and compare with previous model iterations and all available observations and hence describe the skill of using IPIM as a space weather forecasting tool.  
  Programme 312  
  Campaign  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved yes  
  Call Number Serial 8524  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print